forked from ErikGartner/actor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_train_instance_detector.m
275 lines (213 loc) · 7.8 KB
/
run_train_instance_detector.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
function run_train_instance_detector(mode, vgg_path)
% Trains an instance detector
if ~exist('mode', 'var')
mode = 'train';
end
MODEL_NAME=''
clc;
close all;
% Add paths
addpath('code/');
addpath('code/panoptic');
addpath('code/utils');
% Setup global config settings
load_config(mode);
% Create helper
helper = Helpers();
helper.setup_caffe();
predictor = nan;
% Launch panoptic environment and start caching
global CONFIG
CONFIG.predictor_limited_caching = 1;
CONFIG.predictor_disabled = 1;
CONFIG.predictor_precache = 0;
dmhs = DMHSWrapper();
solver = caffe.get_solver('models/instance_classifier/solver.prototxt');
net = solver.net;
env_train = Panoptic(CONFIG.dataset_path, CONFIG.dataset_cache, predictor);
env_val = Panoptic(strrep(CONFIG.dataset_path, 'train', 'val'), strrep(CONFIG.dataset_cache, 'train', 'val'), predictor);
vgg = caffe.Net('models/instance_classifier/vgg19.prototxt', vgg_path, 'test');
iterations = 100000;
batch_size = 16;
bad_imgs = 0;
for it = 1:iterations
val = mod(it, 1000) == 0;
% Build batch
batch = cell(batch_size, 2);
for batch_idx = 1:batch_size
% Either matching pair or not.
if mod(batch_idx, 2) == 0
same = 1;
else
same = 0;
end
if val
[f1, f2] = get_pair(env_val, same, vgg);
else
[f1, f2] = get_pair(env_train, same, vgg);
end
batch{batch_idx, 1} = f1;
batch{batch_idx, 2} = f2;
batch{batch_idx, 3} = same;
end
net.blobs('data').set_data(cat(2, batch{:, 1}));
net.blobs('data_p').set_data(cat(2, batch{:, 2}));
net.blobs('label').set_data(cat(2, batch{:, 3}));
if val
% Every 1000 step evaluate the model
net.forward_prefilled();
f1 = net.blobs('feat').get_data();
f2 = net.blobs('feat_p').get_data();
same = net.blobs('label').get_data();
% Mean distance for same person
dist = sqrt(sum((f1-f2)'.^2, 2));
d_same = mean(same' .* dist);
d_diff = mean((same == 0)' .* dist);
fprintf('Training steps: %d, samples: %d, d_same: %f, d_diff: %f, bad_imgs: %d\n', it, it * batch_size, d_same, d_diff, bad_imgs);
model_path = sprintf('models/instance/model-%s_%d-itr_%s.caffemodel\n', MODEL_NAME, it, datestr(now, 'yyyy-mm-dd-HH-MM-SS'));
net.save(model_path);
fprintf('Saving model to: %s', model_path);
else
% Do training
solver.step(1);
loss = net.blobs('loss').get_data();
if mod(it, 10) == 0
fprintf('Training steps: %d, samples: %d, loss: %f\n', it, it * batch_size, loss);
end
end
end
end
function [f1, f2] = get_pair(env, same, vgg)
% Random scene
while 1
% Random start frame, camera, scene, person
env.reset();
env.goto_person(randi(env.scene().nbr_persons));
% Retry until good view
[yes, bbox_idx] = is_visible(env);
if ~yes
continue
end
% Get features for person 1
f1 = get_features(env, vgg);
% Switch target if negative example
if ~same
old_pid = env.person_idx;
new_pid = old_pid;
while new_pid == old_pid
env.goto_person(randi(env.scene().nbr_persons));
new_pid = env.person_idx;
end
end
frame_idx = env.frame_idx;
tries = 5;
while tries > 0
% Prevent getting stuck in a loop
tries = tries -1;
% Select new random view
max_frame = min(frame_idx + 5 * 10, env.scene().nbr_frames);
min_frame = max(frame_idx - 5 * 10, 1);
env.goto_frame(randi([min_frame, max_frame]));
env.goto_cam(randi(env.scene().nbr_cameras));
% Retry until good view
[yes, bbox_idx] = is_visible(env);
if yes
break
end
end
if tries <= 0
% Didn't find a good f2, restart with new f1.
continue;
end
f2 = get_features(env, vgg);
break;
end
end
function f = get_features_faster_rcnn(env, bbox_idx)
fcs_dataset = strcat('/fcs_', env.scene().scene_name, '_', ...
env.scene().camera_names{env.camera_idx}, '_', ...
strrep(env.scene().frame_names{env.frame_idx}, '.jpg', ''));
det_path = strcat(env.scene().dataset_path, env.scene().scene_name, '/detections.h5');
data = h5read(det_path, fcs_dataset);
f = data(bbox_idx, :)';
end
function f = get_features(env, vgg)
img = get_features_img(env);
img = imresize(img, [224, 224]);
vgg.blobs('data').set_data(img);
vgg.forward_prefilled();
f = vgg.blobs('conv5_4/bn').get_data();
f = f(:);
end
% Function to extract features
function f = get_features_img(env)
%[~, f] = env.get_current_predictor();
f = env.get_current_img();
global CONFIG
annots = env.scene().get_projected_annot(env.frame_idx, env.camera_idx, env.person_idx);
annots = round(annots);
coord_min = min(annots);
coord_max = max(annots);
coord_min(1) = coord_min(1) - CONFIG.panoptic_crop_margin(1);
coord_min(2) = coord_min(2) - CONFIG.panoptic_crop_margin(2);
coord_max(1) = coord_max(1) + CONFIG.panoptic_crop_margin(1);
coord_max(2) = coord_max(2) + CONFIG.panoptic_crop_margin(2);
bbox = [coord_min(2), coord_max(2), coord_min(1), coord_max(1)];
f = env.scene().crop_human(f, bbox);
end
function bbox = pose_to_bbox(pose)
p_start = min(pose);
p_size = max(pose) - p_start;
bbox = [p_start(1), p_start(2), p_size(1), p_size(2)];
end
% Function to check if the target is visible and not occluded.
function [yes, bbox_idx] = is_visible(env)
yes = 0;
bbox_idx = -1;
pose = env.scene().get_projected_annot(env.frame_idx, env.camera_idx, env.person_idx);
bbox = pose_to_bbox(pose);
if bbox(3) < 32 || bbox(4) < 32
return;
end
img_box = [0, 0, 1920, 1080];
% bbox overlaps with image
in_ratio = bboxOverlapRatio(bbox, img_box, 'min');
if in_ratio < 0.8
return
end
old_pid = env.person_idx;
for pid = 1:env.scene().nbr_persons;
if pid ~= old_pid
env.goto_person(pid);
pose = env.scene().get_projected_annot(env.frame_idx, env.camera_idx, env.person_idx);
otherbox = pose_to_bbox(pose);
ratio = bboxOverlapRatio(bbox, otherbox, 'union');
if ratio > 0.20
env.goto_person(old_pid);
return
end
end
end
env.goto_person(old_pid);
% Check for overlapping detection box
bboxes_dataset = strcat('/detections_', env.scene().scene_name, '_', ...
env.scene().camera_names{env.camera_idx}, '_', ...
strrep(env.scene().frame_names{env.frame_idx}, '.jpg', ''));
det_path = strcat(env.scene().dataset_path, env.scene().scene_name, '/detections.h5');
data = h5read(det_path, bboxes_dataset);
max_ratio = 0;
max_idx = 0;
for box_idx = 1:size(data, 1)
% Crop dection to get only human
det_box = [data(box_idx, 1), data(box_idx, 2), data(box_idx, 3) - data(box_idx, 1), data(box_idx, 4) - data(box_idx, 2)];
ratio = bboxOverlapRatio(bbox, det_box, 'union');
if ratio > max_ratio
max_ratio = ratio;
max_idx = box_idx;
end
end
if max_ratio > 0.5
yes = 1;
bbox_idx = max_idx;
end
end