forked from alinionutpopa/dmhs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemoDMHS.m
127 lines (117 loc) · 4.59 KB
/
demoDMHS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function [pose3D, pose2D, bodyPartLabeling] = demoDMHS(img_path, output_name, multiplier_3D, multiplier_sem)
% demoDMHS - apply Deep Multitask Human Sensing (DMHS) CNN model on a single image
% [pose3D, pose2D, bodyPartLabeling] = demoDMHS(img_path, output_name, multiplier_3D, multiplier_sem)
%
% OUTPUT :
% pose3D - cell array with 6 elements (one for each stage of the
% DMHS) each containing the corresponding 3D pose
% prediction (17x3)
% pose2D - cell array with 6 elements (one for each stage of the
% DMHS) each containing the corresponding 2D pose
% prediction (14x2)
% bodyPartLabeling - cell array with 6 elements (one for each stage of the
% DMHS) each containing the corresponding body part
% labeling mask
%
% INPUT :
% img_path - path to image used for testing
% - it should contain a single person inside a bounding box
% output_name - output name for mat file with results corresponding to
% image to img_path
% - the mat file will be saved by default in ./data/results/
% multiplier_3D - image scales used by the 3D pose estimation task of
% DMHS network
% multiplier_sem - image scales used by the body part labeling task of
% DMHS network
if(nargin == 0)
img_path = './data/images/im1020.jpg';
% img_path = './data/images/im1037.jpg';
% img_path = './data/images/im1054.jpg';
% img_path = './data/images/im2673.png';
% img_path = './data/images/im2788.png';
end
if(nargin < 2)
output_name = 'results_im1020';
% output_name = 'results_im1037';
% output_name = 'results_im1054';
% output_name = 'results_im2673';
% output_name = 'results_im2788';
end
if(nargin < 3)
multiplier_sem = 0.4:0.1:1;
end
if(nargin < 4)
multiplier_3D = 0.7:0.1:1;
end;
img = imread(img_path);
% Recommended size for the X axis of img in order to obtain the best
% network results with default multiplier_sem (0.4:0.1:1) and multiplier_3D
% (0.7:0.1:1). For different image sizes, please revalidate multiplier_sem
% and multiplier_3D.
avgDimX = 386;
resizeFactor = avgDimX / size(img, 1);
img = imresize(img, resizeFactor);
% switch displayModel to 1 for visualizing the results
displayMode = 1;
addpath('./code/');
% use_gpu = 1 for GPU usage (please note that for all 6 stages it requires
% 11 GB of GPU memory)
% use_gpu = 0 for CPU usage
use_gpu = 1;
% default model_id for DMHS
model_id = 1;
param = config(use_gpu, 0, model_id);
model = param.model(param.modelID);
net = caffe.Net(model.deployFile, model.caffemodel, 'test');
rectangle = [1 1 size(img, 2) size(img, 1)];
% First output parameter of applyModelPreloadedNet_DMHS returns the cell
% arrays containing the processed outputs of each of the network's stages.
% Second output parameter of applyModelPreloadedNet_DMHS returns the raw
% output of the network.
[predictions, network_output] = applyModelPreloadedNet_DMHS(net, img, param, rectangle, multiplier_3D, multiplier_sem);
pose2D = predictions{1};
bodyPartLabeling = predictions{2};
pose3D = predictions{3};
if (~exist('./data/results/', 'dir'))
mkdir('./data/results/');
end;
save(['./data/results/' output_name '.mat'], 'pose3D', 'pose2D', 'bodyPartLabeling', 'img', 'network_output');
if (displayMode == 1)
figure;
% image used for testing
imshow(img);
title('Test Image');
figure;
% Estimated 3D poses corresponding to each stage (1 - 6)
set(gcf, 'Position', get(0,'Screensize'));
for i = 1 : 6
subplot(2, 3, i);
plotSkel3D(pose3D{i}, 'r');
title(sprintf('Pose 3D prediction - stage %d', i));
end
figure;
% Body part labeling prediction corresponding to each stage (1 - 6)
set(gcf, 'Position', get(0,'Screensize'));
for i = 1 : 6
subplot(2, 3, i);
imagesc(bodyPartLabeling{i});
axis image;
axis off;
title(sprintf('Body labeling prediction - stage %d', i));
end
figure;
% Estimated 2D poses corresponding to each stage (1 - 6)
set(gcf, 'Position', get(0,'Screensize'));
facealpha = 0.6; % for limb transparency
truncate = zeros(1,model.np);
for i = 1:6
pred = pose2D{i};
subplot(2,3,i);
imshow(img);
hold on;
bodyHeight = max(pred(:,2)) - min(pred(:,2));
plotSkel2D(model, facealpha, pred, truncate, bodyHeight/30);
plot(pred(:,1), pred(:,2), 'k.', 'MarkerSize', bodyHeight/32);
title(sprintf('Pose 2D prediction - stage %d', i));
end;
end;