-
Notifications
You must be signed in to change notification settings - Fork 0
/
cv.py.bak
118 lines (104 loc) · 4.67 KB
/
cv.py.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/python
#
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import jetson.inference
import jetson.utils
import argparse
import sys
import time
import numpy as np
import cv2
# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.",
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage())
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2",
help="pre-trained model to load (see below for options)")
parser.add_argument("--overlay", type=str, default="box,labels,conf",
help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: 'box', 'labels', 'conf', 'none'")
parser.add_argument("--threshold", type=float, default=0.5,
help="minimum detection threshold to use")
parser.add_argument("--camera", type=str, default="/dev/video0",
help="index of the MIPI CSI camera to use (e.g. CSI camera 0)\nor for VL42 cameras, the /dev/video device to use.\nby default, MIPI CSI camera 0 will be used.")
parser.add_argument("--width", type=int, default=640,
help="desired width of camera stream (default is 640 pixels)")
parser.add_argument("--height", type=int, default=480,
help="desired height of camera stream (default is 480 pixels)")
try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load the object detection network
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)
font = jetson.utils.cudaFont()
# create the camera and display
camera = jetson.utils.gstCamera(opt.width, opt.height, opt.camera)
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
out_video = cv2.VideoWriter('/tmp/detect.mp4', fourcc, 25, (640, 480))
count = 0
img, width, height = camera.CaptureRGBA(zeroCopy=1)
print("========== Capture Width:%d Height:%d ===========" % (width, height))
# process frames until user exits
t = time.time()
while count < 500:
# capture the image
img, width, height = camera.CaptureRGBA(zeroCopy=1)
# detect objects in the image (with overlay)
detections = net.Detect(img, width, height, opt.overlay)
####
# Looks like we should have a if statement: If detections = vehicle, update database counter
# else: ignore detections
# -Josh
# print the detections
print("detected {:d} objects in image".format(len(detections)))
fps = 1.0 / (time.time() - t)
for detection in detections:
print(detection)
font.OverlayText(img, width, height, "FPS:%5.2f" %
(fps), 5, 30, font.White, font.Gray40)
t = time.time()
# for numpy conversion, wait for synchronizing
jetson.utils.cudaDeviceSynchronize()
arr = jetson.utils.cudaToNumpy(
img, width, height, 4) # CUDA img is float type
arr1 = cv2.cvtColor(arr.astype(np.uint8), cv2.COLOR_RGBA2BGR)
if(count % 100 == 0):
cv2.imwrite("/tmp/detect-" + str(count) + ".jpg", arr1)
out_video.write(arr1)
# cv2.imshow('imageNet', arr1)
# cv2.waitKey(1)
print("==== FPS:%f =====" % (fps))
# print out performance info
# net.PrintProfilerTimes()
count += 1
# Nano's Capability
# 2 Uart
# 2 I2C
# 2 SPI
# Nano Comms
# rx info from MM about RFID cars
# tx info to MM about Photo cars, to update 7-seg
# Main Module
# 1 SPI 7-segment
# 1 UART?? RFID comms
#