-
Notifications
You must be signed in to change notification settings - Fork 129
/
generate_normal.py
170 lines (133 loc) · 6.02 KB
/
generate_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os, sys
import numpy as np
import imageio
import json
import random
import time
from pytorch_lightning.utilities.distributed import rank_zero_only
from tqdm import tqdm, trange
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.optim.lr_scheduler
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning import loggers as pl_loggers
from opt import config_parser
from dataset.llff import LLFFDataset
from models.neroic_renderer import NeROICRenderer
import models.network.neroic as NeROIC
from utils.utils import *
import pickle
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
np.random.seed(0)
DEBUG = False
class NeRFSystem(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if args.model == 'NeROIC':
self.renderer = NeROICRenderer(args)
else:
raise ValueError("Unsupported model.")
self.basedir = args.basedir
self.expname = args.expname
self.render_kwargs_train = {
'perturb' : args.perturb,
'N_importance' : args.N_importance,
'N_samples' : args.N_samples,
'use_viewdirs' : args.use_viewdirs,
'raw_noise_std' : args.raw_noise_std,
}
self.render_kwargs_train['lindisp'] = args.lindisp
self.render_kwargs_train['perturb'] = False
self.render_kwargs_train['N_samples'] = self.render_kwargs_train['N_samples']*4
self.render_kwargs_train['raw_noise_std'] = 0.
def forward(self, rays, pose, img_id, normal_mode=True):
return self.renderer(pixel_coords=rays, test_pose=pose, img_id=img_id, chunk=self.args.chunk//16, normal_mode=normal_mode, **self.render_kwargs_train)
def test_step(self, batch, batch_idx):
# TODO: support multiple batches
rays = batch['rays'][0]
pose = batch['poses'][0]
img_id = batch['img_id'][0]
# Extracting a rough bounding box based on density function (sigma)
print("Generating Coarse Bounding Box...")
if not self.args.use_bbox:
sample_idx = torch.randperm(rays.shape[1])[:rays.shape[1] // 100]
rays_sample = rays[:, sample_idx, :]
img_id_sample = img_id[sample_idx]
ret_dict = self(rays_sample, pose, img_id_sample)
pts = ret_dict['pts_map'][ret_dict['acc_map']>0.5]
bbox = enlarge_bbox(torch.stack([pts.min(dim=0)[0], pts.max(dim=0)[0]], dim=0), 1.1)
else:
bbox = torch.from_numpy(self.render_kwargs_train['bbox'].T).type_as(rays)
print("bbox is ", bbox)
print("Generating Normal 3D Grid...")
self.renderer.calc_normal_grid(rays.device, self.args.chunk, bbox=bbox)
print("Rendering Rays...")
normal_mean = self.renderer.calc_normal(rays, img_id,
self.args.chunk//8, **self.render_kwargs_train)
batch['normal_mean'] = normal_mean[None,...]
batch['depth_mean'] = normal_mean[None,:,0]
batch['depth_var'] = normal_mean[None,:,0]
print("Saving Images for Visualization...")
for i in range(img_id.max().long()+1):
pose = self.test_dataset.get_pose(i)
h, w = pose[0:2, 4].long()
rays_i = rays[0, img_id[:,0] == i, :2].long()
if len(rays_i) != h*w:
continue
normal_i = normal_mean[img_id[:,0] == i]
normal_img = torch.zeros_like(normal_i).reshape(h, w, 3)
normal_img[rays_i[:, 1], rays_i[:, 0]] = normal_i
normal_img = torch.matmul(torch.inverse(self.renderer.cam_R[i]),normal_img.reshape(-1, 3).T).T.reshape(normal_img.shape)
normal_img = (normal_img.detach().cpu().numpy()+1)/2
imageio.imwrite(os.path.join(self.logger.save_dir, self.args.expname, "%d_normal.png"%i), to8b(normal_img))
print("Saving Rays...")
if len(self.test_dataset.i_train) != 1: # Safety check
for k, v in batch.items():
batch[k] = v.detach().cpu()
pickle.dump(batch, open(os.path.join(self.logger.save_dir, self.args.expname, "rays.pkl"), "wb"))
def validation_step(self, batch, batch_idx):
pass
def setup(self, stage):
if self.args.dataset_type == 'llff':
self.args.split = "train"
self.test_dataset = LLFFDataset(self.args, recenter=True, bd_factor=0.75, path_zflat=False)
elif self.args.dataset_type == 'nerd_real':
self.args.split = "train"
self.test_dataset = NerDRealDataset(self.args, recenter=True, bd_factor=0.75, path_zflat=False)
else:
raise ValueError('Unknown dataset type: %s'%self.args.dataset_type)
self.bds_dict = {
'near' : self.test_dataset.near,
'far' : self.test_dataset.far,
'bbox': self.test_dataset.bbox,
}
self.render_kwargs_train.update(self.bds_dict)
self.test_dataset.generate_rays()
self.renderer.init_cam_pose(self.test_dataset.get_all_poses())
self.test_dataset.print_info()
def test_dataloader(self):
return torch.utils.data.DataLoader(self.test_dataset, shuffle=False, num_workers=4, batch_size=1, pin_memory=True)
def train():
parser = config_parser()
args = parser.parse_args()
args.verbose = True
args.have_mask = True
args.mask_ratio = 100000
# Setting an infinitely large N_rand so the dataloader can load all rays within one batch.
args.N_rand = 30000000000
args.split = "train"
logger = pl_loggers.TensorBoardLogger(
save_dir="results/cached_rays",
name=args.expname
)
nerf_sys = NeRFSystem.load_from_checkpoint(checkpoint_path=args.ft_path, map_location=None, **{'args': args}, strict=False)
trainer = Trainer(gpus=1, logger=logger)
trainer.test(nerf_sys)
if __name__=='__main__':
train()