-
Notifications
You must be signed in to change notification settings - Fork 129
/
train.py
342 lines (281 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os, sys
import numpy as np
import imageio
import json
import random
import time
from pytorch_lightning.accelerators import accelerator
from pytorch_lightning.utilities.distributed import rank_zero_only
from tqdm import tqdm, trange
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.optim.lr_scheduler
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning import loggers as pl_loggers
from opt import config_parser
from dataset.llff import LLFFDataset
from models.neroic_renderer import NeROICRenderer
import models.network.neroic as NeROIC
import models.sh_functions as sh
from utils.utils import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
np.random.seed(0)
DEBUG = False
class NeROICSystem(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if args.model == 'NeROIC':
self.renderer = NeROICRenderer(args)
else:
raise ValueError("Unsupported model.")
self.basedir = args.basedir
self.expname = args.expname
self.model_type = args.model_type
self.render_kwargs_train = {
'perturb' : args.perturb,
'N_importance' : args.N_importance,
'N_samples' : args.N_samples,
'use_viewdirs' : args.use_viewdirs,
'raw_noise_std' : args.raw_noise_std,
}
# NDC only good for LLFF-style forward facing data
# Since this model is designed for 360 images, NDC is not supported here
# self.render_kwargs_train['ndc'] = False
self.render_kwargs_train['lindisp'] = args.lindisp
self.render_kwargs_test = {k : self.render_kwargs_train[k] for k in self.render_kwargs_train}
self.render_kwargs_test['perturb'] = False
self.render_kwargs_test['N_samples'] = self.render_kwargs_test['N_samples']*4 # more samples during testing
self.render_kwargs_test['raw_noise_std'] = 0.
def configure_optimizers(self):
self.optimizer = torch.optim.Adam(params=self.renderer.parameters(), lr=self.args.lrate, eps=1e-8, weight_decay=0)#betas=(0.9, 0.999))
if self.args.scheduler == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=self.args.decay_epoch[0], eta_min=1e-6)
elif self.args.scheduler == "multistep":
scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=self.args.decay_epoch[0], gamma=self.args.decay_gamma)
return [self.optimizer], [scheduler]
def forward(self, pixel_coords, pose, img_id): # Rendering
return self.renderer(pixel_coords=pixel_coords, test_pose=pose, img_id=img_id,
chunk=self.args.chunk, **self.render_kwargs_train)
def training_step(self, batch, batch_idx):
rays = batch['rays'][0]
pose = batch['poses'][0]
img_id = batch['img_id'][0]
gt_color = batch['gt_color'][0]
rays_is_bg = batch['rays_is_bg'][0]
gt_normal = batch['gt_normal'][0]
ret_dict = self.forward(rays, pose, img_id)
loss_dict, prog_list = self.renderer.calculate_loss(ret_dict, gt_color, gt_normal, rays_is_bg,
self.bds_dict, img_id)
# Rendering from testing views during training
if self.trainer.is_global_zero:
is_video_step = (self.global_step%self.args.i_video==0 and self.global_step > 0)
is_traintesting_step = (self.global_step%self.args.i_traintest==0 and self.global_step > 0)
is_last_epoch = (batch_idx==0 and self.current_epoch == self.args.num_epochs-1)
if is_video_step or is_last_epoch:
movie_dir = '{}/{}_{:06d}'.format(self.logger.log_dir, self.expname, self.global_step)
os.makedirs(movie_dir, exist_ok=True)
moviebase = os.path.join(movie_dir, '{}_spiral_{:06d}_'.format(self.expname, self.global_step))
poses = self.train_dataset.get_test_poses().to(rays.device)
ret_dict_list = []
# Turn on testing mode
with torch.no_grad():
for i in trange(len(poses)):
ret_dict_list.append(self.renderer.batch_render_test(poses[i:i+1,...],
self.args.chunk//2, self.render_kwargs_test,
img_id=self.args.test_img_id))
imageio.imwrite(os.path.join(movie_dir, "%02d.png"%i),
to8b(ret_dict_list[-1]['static_rgb_map'][0]))
# Saving output buffers
for k in ret_dict_list[0].keys():
v = np.concatenate([x[k] for x in ret_dict_list], axis=0)
if k == 'depth_map':
v = (visualize_depth(v)*255).cpu().numpy().transpose([0,2,3,1]).astype(np.uint8)
elif k == 'normal_map_weighted':
origin_shape = v.shape
v = torch.from_numpy(v).type_as(poses).reshape(poses.shape[0], -1, 3).transpose(1, 2) # B x 3 x HW
v = torch.bmm(torch.inverse(poses[:,:3,:3]),v).transpose(1, 2).reshape(origin_shape).cpu().numpy()
v = to8b((v+1)/2)
else:
v = to8b(v)
imageio.mimwrite(moviebase + '%s.mp4'%k, v, fps=30, quality=8)
# Rendering from training poses during training
if is_traintesting_step or is_last_epoch:
movie_dir = '{}/{}_{:06d}'.format(self.logger.log_dir, self.expname, self.global_step)
os.makedirs(movie_dir, exist_ok=True)
poses = self.train_dataset.get_train_poses().to(rays.device)
ret_dict_list = []
# Turn on testing mode
with torch.no_grad():
for i in trange(min(5, len(poses))):
ret_dict_list.append(self.renderer.batch_render_test(poses[i:i+1,...],
self.args.chunk//2, self.render_kwargs_test,
img_id=self.train_dataset.i_train[i]))
imageio.imwrite(os.path.join(movie_dir, "train_%02d_static.png"%i), to8b(ret_dict_list[-1]['static_rgb_map'][0]))
imageio.imwrite(os.path.join(movie_dir, "train_%02d.png"%i), to8b(ret_dict_list[-1]['rgb_map'][0]))
for loss_key, loss_val in loss_dict.items():
prog = (loss_key in prog_list)
self.log('train_%s'%loss_key, loss_val, prog_bar=prog, rank_zero_only=True)
self.log('lr', get_learning_rate(self.optimizer), rank_zero_only=True)
return loss_dict['loss']
def validation_step(self, batch, batch_idx):
poses = batch['poses']
gt_imgs = batch['gt_color']
gt_masks = batch['gt_mask']
ret_dict = self.renderer.batch_render_test(poses, self.args.chunk//4, self.render_kwargs_test, img_id=self.args.test_img_id)
rgbs = torch.FloatTensor(ret_dict['rgb_map']).to(gt_imgs.device)
rgbs_acc = torch.FloatTensor(ret_dict['acc_map']).to(gt_imgs.device)[...,None][...,[0,0,0]]
rgbs_coarse = torch.FloatTensor(ret_dict['rgb_map_coarse']).to(gt_imgs.device)
rgbs_static = torch.FloatTensor(ret_dict['static_rgb_map']).to(gt_imgs.device)
if 'albedo_map' in ret_dict: # albedo map
rgbs_albedo = torch.FloatTensor(ret_dict['albedo_map']).to(gt_imgs.device)
else:
rgbs_albedo = rgbs
if 'spec_map' in ret_dict: # specular map
rgbs_specular = torch.FloatTensor(ret_dict['spec_map']).to(gt_imgs.device)
else:
rgbs_specular = rgbs
if 'glossiness_map' in ret_dict: # glossiness map
rgbs_glossiness = torch.FloatTensor(ret_dict['glossiness_map']).to(gt_imgs.device)
else:
rgbs_glossiness = rgbs
if 'transient_acc_map' in ret_dict: # transient accumulation map
rgbs_transient = torch.FloatTensor(ret_dict['transient_acc_map']).to(gt_imgs.device)[...,None][...,[0,0,0]]
else:
rgbs_transient = rgbs
if 'is_edge' in ret_dict: # edge map
rgbs_is_edge = torch.FloatTensor(ret_dict['is_edge']).to(gt_imgs.device)[...,None][...,[0,0,0]]
else:
rgbs_is_edge = rgbs
if self.args.model_type == "rendering": # sh env lighting map
rgbs_light = sh.unproject_environment(3, self.renderer.env_lights[self.args.test_img_id],
rgbs.shape[1], rgbs.shape[2])
else:
rgbs_light = rgbs[0]
gt_imgs = gt_imgs
if self.args.debug_green_bkgd:
bkgd = torch.from_numpy(np.array([0,1,0])).type_as(rgbs)
else:
bkgd = torch.from_numpy(np.array([1,1,1])).type_as(rgbs)
log = {}
img_loss = img2mse(rgbs, gt_imgs*gt_masks[...,None] + bkgd*(~gt_masks[...,None]))
loss = img_loss
psnr = mse2psnr(img_loss)
log = {'val_loss': loss, 'val_psnr': psnr}
if self.trainer.is_global_zero and batch_idx == 0:
img = rgbs[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_coarse = rgbs_coarse[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_static = rgbs_static[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_albedo = rgbs_albedo[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_specular = rgbs_specular[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_glossiness = rgbs_glossiness[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_transient = rgbs_transient[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_is_edge = rgbs_is_edge[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_acc = rgbs_acc[0].clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_light = rgbs_light.clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
img_gt = gt_imgs[0].permute(2, 0, 1).cpu() # (3, H, W)
depth = visualize_depth(ret_dict['depth_map'][0]) # (3, H, W)
if 'normal_map_weighted' in ret_dict:
normal = torch.FloatTensor(ret_dict['normal_map_weighted'][0]).type_as(gt_imgs).reshape(-1, 3).T # 3 x HW
normal = torch.matmul(torch.inverse(poses[0,:3,:3]),normal).T.reshape(gt_imgs[0].shape)
normal = (normal+1)/2
normal = normal.clamp(0, 1).permute(2, 0, 1).cpu() # (3, H, W)
else:
normal = img
# Validation buffers: gt image, pred image, static-only rgb, transient rgb, coarse rgb,
# depth, albedo, specular, glossiness, normal
# edge, acc map, env lighting
stack = torch.stack([
img_gt, img, img_static, img_transient, img_coarse,
depth, img_albedo, img_specular, img_glossiness, normal,
img_is_edge, img_acc, img_light]) # (4, 3, H, W)
self.logger.experiment.add_images('val/GT_pred_depth', stack, self.global_step)
return log
def setup(self, stage):
if self.args.dataset_type == 'llff':
self.args.split = "train"
self.train_dataset = LLFFDataset(self.args, recenter=True, bd_factor=0.75, path_zflat=False)
self.args.split = "val"
self.val_dataset = LLFFDataset(self.args, recenter=True, bd_factor=0.75, path_zflat=False)
else:
raise ValueError('Unknown dataset type: %s'%self.args.dataset_type)
self.bds_dict = {
'near' : self.train_dataset.near,
'far' : self.train_dataset.far,
'bbox' : self.train_dataset.bbox,
}
self.render_kwargs_train.update(self.bds_dict)
self.render_kwargs_test.update(self.bds_dict)
if self.args.rays_path == "":
self.train_dataset.generate_rays()
else: # Load pre-processed rays
self.train_dataset.load_rays_from_file(self.args.rays_path)
self.renderer.init_cam_pose(self.train_dataset.get_all_poses())
self.train_dataset.print_info()
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_dataset, shuffle=True, num_workers=4, batch_size=1, pin_memory=True)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.val_dataset, shuffle=False, num_workers=4, batch_size=1, pin_memory=True)
def training_epoch_end(self, outputs):
self.train_dataset.shuffle()
return super().training_epoch_end(outputs)
def validation_epoch_end(self, outputs):
# Validation losses do not reflect the quality of the model, as the testing lighting / camera is unknown.
outputs = self.all_gather(outputs)
mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean() # mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean() # mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()
self.log('val_loss', mean_loss, prog_bar=False, rank_zero_only=True) # self.log('val_loss', mean_loss, prog_bar=False, rank_zero_only=True)
self.log('val_psnr', mean_psnr, prog_bar=False, rank_zero_only=True)
def on_train_start(self):
if self.trainer.is_global_zero:
f = os.path.join(self.logger.log_dir, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(self.args)):
attr = getattr(self.args, arg)
file.write('{} = {}\n'.format(arg, attr))
if self.args.config is not None:
f = os.path.join(self.logger.log_dir, 'config.txt')
with open(f, 'w') as file:
file.write(open(self.args.config, 'r').read())
return super().on_train_start()
def train():
parser = config_parser()
args = parser.parse_args()
args.split = "train"
# Create log dir and copy the config file
os.makedirs(os.path.join(args.basedir, args.expname), exist_ok=True)
nerf_sys = NeROICSystem(args)
# Summary writers
logger = pl_loggers.TensorBoardLogger(
save_dir=args.basedir,
name=args.expname
)
checkpoint_callback = ModelCheckpoint(dirpath=os.path.join(args.basedir, args.expname),
filename='{epoch:d}',
monitor=None,
every_n_val_epochs=1)
if args.load_prior == True: # Train
nerf_sys = nerf_sys.load_from_checkpoint(args.ft_path, map_location=None, **{'args': args}, strict=False)
trainer = Trainer(
max_epochs=args.num_epochs,
callbacks=[checkpoint_callback],
resume_from_checkpoint= "" if args.load_prior else args.ft_path,
logger=logger,
weights_summary=None,
progress_bar_refresh_rate=1 if args.verbose else 100,
gpus=args.num_gpus,
accelerator='ddp' if args.num_gpus>1 else None,
num_sanity_val_steps=1 if args.verbose else 1,
gradient_clip_val=1,
benchmark=True,
val_check_interval = 1.0 if args.i_testset<=0 else args.i_testset,
check_val_every_n_epoch = 1 if args.verbose else args.i_testepoch,
profiler="simple" if args.num_gpus==1 else None)
trainer.fit(nerf_sys)
if __name__=='__main__':
train()