-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqgis_snowflake_connector_algorithm.py
524 lines (456 loc) · 20.3 KB
/
qgis_snowflake_connector_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# -*- coding: utf-8 -*-
"""
/***************************************************************************
Snowflake Connector for QGIS
This package includes the Snowflake Connector for QGIS.
Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/
-------------------
begin : 2024-08-07
copyright : (C) 2024 by Snowflake
email : [email protected]
***************************************************************************/
/***************************************************************************
* *
* This program is licensed under the MIT License. You may use, modify, *
* and distribute it under the terms specified in the license. *
* *
* MIT License *
* *
* Permission is hereby granted, free of charge, to any person obtaining *
* a copy of this software and associated documentation files (the *
* "Software"), to deal in the Software without restriction, including *
* without limitation the rights to use, copy, modify, merge, publish, *
* distribute, sublicense, and/or sell copies of the Software, and to *
* permit persons to whom the Software is furnished to do so, subject *
* to the following conditions: *
* *
* The above copyright notice and this permission notice shall be *
* included in all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, *
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF *
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY *
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, *
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE *
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
* *
***************************************************************************/
"""
__author__ = "Snowflake Inc."
__date__ = "2024-08-07"
__copyright__ = "(C) 2024 by Snowflake"
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = "$Format:%H$"
import json
import typing
from qgis.PyQt.QtCore import QCoreApplication, QByteArray, QVariant
from qgis.core import (
QgsProcessing,
QgsProcessingAlgorithm,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterString,
QgsProcessingContext,
QgsVectorLayer,
)
from .managers.sf_connection_manager import SFConnectionManager
from .helpers.data_base import (
create_schema,
create_table,
get_count_schemas,
get_count_tables,
)
from .entities.sf_dynamic_connection_combo_box_widget import (
DynamicConnectionComboBoxWidget,
)
from .providers.sf_data_source_provider import SFDataProvider
from .helpers.utils import get_authentification_information, get_qsettings
class QGISSnowflakeConnectorAlgorithm(QgsProcessingAlgorithm):
"""
This is an example algorithm that takes a vector layer and
creates a new identical one.
It is meant to be used as an example of how to create your own
algorithms and explain methods and variables used to do it. An
algorithm like this will be available in all elements, and there
is not need for additional work.
All Processing algorithms should extend the QgsProcessingAlgorithm
class.
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
DATABASE = "DATABASE"
OUTPUT = "OUTPUT"
INPUT = "INPUT"
FIRST_COMBO = "FIRST_COMBO"
SECOND_COMBO = "SECOND_COMBO"
CONNECTION_DYN_CB = "CONNECTION_DYN_CB"
GEOMETRY_COLUMN = "GEOMETRY_COLUMN"
def initAlgorithm(self, config):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
# We add the input vector features source. It can have any kind of
# geometry.
self.settings = get_qsettings()
self.addParameter(
QgsProcessingParameterFeatureSource(
self.INPUT,
self.tr("Input layer"),
[QgsProcessing.TypeVectorAnyGeometry],
)
)
param = QgsProcessingParameterString(
self.CONNECTION_DYN_CB,
"Connection (connection name)",
optional=False,
defaultValue="",
)
param.setMetadata(
{
"widget_wrapper": {"class": DynamicConnectionComboBoxWidget},
"required": True,
}
)
self.addParameter(param)
self.addParameter(
QgsProcessingParameterString(
self.GEOMETRY_COLUMN,
"Geometry Column",
defaultValue="", # Optional default value
)
)
self.connection_manager: SFConnectionManager = (
SFConnectionManager.get_instance()
)
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
source = self.parameterAsSource(parameters, self.INPUT, context)
geom_column = self.parameterAsString(parameters, self.GEOMETRY_COLUMN, context)
from urllib.parse import parse_qs, urlparse
parsed_uri = urlparse(
self.parameterAsVectorLayer(parameters, self.INPUT, context).source()
)
params = parse_qs(parsed_uri.query)
is_snowflake_layer = (
"internal_provider" in params
and len(params["internal_provider"]) > 0
and params["internal_provider"][0] == "snowflake"
)
selected_connection, selected_database, selected_schema, selected_table = (
json.loads(
self.parameterAsString(parameters, self.CONNECTION_DYN_CB, context)
)
)
auth_information = get_authentification_information(
self.settings, selected_connection
)
self.sf_data_provider = SFDataProvider(auth_information)
if selected_schema == "":
selected_schema = "PUBLIC"
count_schemas = get_count_schemas(
settings=self.settings,
connection_name=selected_connection,
data_base_name=selected_database,
schema_name=selected_schema,
)
if count_schemas == 0:
create_schema(
settings=self.settings,
connection_name=selected_connection,
schema_name=selected_schema,
)
if selected_table == "":
selected_table = self.parameterAsSource(
parameters, self.INPUT, context
).sourceName()
count_table = get_count_tables(
connection_name=selected_connection,
database_name=selected_database,
schema_name=selected_schema,
table_name=selected_table,
)
if count_table == 0:
query_create_table = self.get_create_table_query(
geom_column=geom_column,
source=source,
is_snowflake_layer=is_snowflake_layer,
database_name=selected_database,
schema_name=selected_schema,
table_name=selected_table,
)
create_table(
connection_name=selected_connection, query=query_create_table
)
# Retrieve the feature source and sink. The 'dest_id' variable is used
# to uniquely identify the feature sink, and must be included in the
# dictionary returned by the processAlgorithm function.
# source = self.parameterAsSource(parameters, self.INPUT, context)
# (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
# context, source.fields(), source.wkbType(), source.sourceCrs())
# Compute the number of steps to display within the progress bar and
# get features from source
total = 100.0 / source.featureCount() if source.featureCount() else 0
features = source.getFeatures()
if source.featureCount() == 0:
feedback.setProgress(100)
return {"Rows Inserted": 0}
query_columns = f"{geom_column}"
for field in source.fields():
if field.name().lower() == geom_column.lower():
continue
query_columns += f",{field.name()}"
query_base = f'INSERT INTO "{selected_database}"."{selected_schema}"."{selected_table}" ({query_columns}) VALUES '
query = query_base
first = True
executed = False
for current, feature in enumerate(features):
if current != 0 and current % 5000 == 0:
cur = self.sf_data_provider.execute_query(query, selected_connection)
cur.close()
query = query_base
first = True
executed = True
executed = False
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
break
byte_array = QByteArray(feature.geometry().asWkb())
# Convert QByteArray to hexadecimal string
hex_string = byte_array.toHex().data().decode()
if first:
first = False
else:
query += ","
query_values = f"('{hex_string}'"
for field in source.fields():
query_values += ","
if field.name().lower() == geom_column.lower():
query_values += f"'{hex_string}'"
else:
feat_index = feature.fieldNameIndex(field.name())
feat_val = feature.attribute(feat_index)
if is_snowflake_layer:
if feat_val is None:
query_values += "NULL"
elif field.subType() == QVariant.String:
feat_val = feat_val.replace("'", "\\'")
query_values += f"'{feat_val}'"
elif field.subType() in [
QVariant.Date,
QVariant.DateTime,
QVariant.Time,
]:
query_values += f"'{feat_val}'"
else:
query_values += f"{feat_val}"
else:
if feat_val is None:
query_values += "NULL"
elif isinstance(feat_val, QVariant) and feat_val.isNull():
query_values += "NULL"
elif field.type() == QVariant.String:
feat_val = feat_val.replace("'", "\\'")
query_values += f"'{feat_val}'"
elif field.type() == QVariant.Date:
query_values += f"'{feat_val.toString('yyyy-MM-dd')}'"
elif field.type() == QVariant.Time:
query_values += f"'{feat_val.toString('hh:mm:ss')}'"
elif field.type() == QVariant.DateTime:
query_values += (
f"'{feat_val.toString('yyyy-MM-dd hh:mm:ss')}'"
)
else:
query_values += f"{feat_val}"
query_values += ")"
query += query_values
# Update the progress bar
feedback.setProgress(int(current * total))
if not executed:
cur = self.sf_data_provider.execute_query(query, selected_connection)
cur.close()
# Return the results of the algorithm. In this case our only result is
# the feature sink which contains the processed features, but some
# algorithms may return multiple feature sinks, calculated numeric
# statistics, etc. These should all be included in the returned
# dictionary, with keys matching the feature corresponding parameter
# or output names.
# return {self.OUTPUT: dest_id}
return {"Rows Inserted": source.featureCount()}
def get_field_type_from_code_type(self, code_type: int) -> str:
"""
Get the field type from the code type.
Args:
code_type (int): The code type.
Returns:
str: The field type.
"""
if code_type == QVariant.String:
return "TEXT"
if code_type == QVariant.Int:
return "INTEGER"
if code_type == QVariant.Double:
return "DOUBLE"
if code_type == QVariant.Date:
return "DATE"
if code_type == QVariant.Time:
return "TIME"
if code_type == QVariant.DateTime:
return "TIMESTAMP"
if code_type == QVariant.Bool:
return "BOOLEAN"
return "TEXT"
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return "Export to Snowflake"
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr(self.name())
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr("Database")
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return "database"
def tr(self, string):
return QCoreApplication.translate("Processing", string)
def createInstance(self):
return QGISSnowflakeConnectorAlgorithm()
def checkParameterValues(
self, parameters: typing.Dict[str, typing.Any], context: "QgsProcessingContext"
) -> typing.Tuple[bool, str]:
"""
Check if the parameters are valid and return a tuple with a boolean and a message
"""
try:
geom_column = self.parameterAsString(
parameters, self.GEOMETRY_COLUMN, context
)
selected_connection, selected_database, selected_schema, selected_table = (
json.loads(
self.parameterAsString(parameters, self.CONNECTION_DYN_CB, context)
)
)
selected_table_is_empty = False
if selected_schema == "":
selected_schema = "PUBLIC"
if selected_table == "":
selected_table_is_empty = True
selected_table = self.parameterAsSource(
parameters, self.INPUT, context
).sourceName()
if geom_column == "":
return False, "Geometry Column can not be empty!"
if selected_connection == "":
return False, "Please select a connection!"
if not selected_table_is_empty:
# Check if the selected table exists
source = self.parameterAsSource(parameters, self.INPUT, context)
count_table = get_count_tables(
connection_name=selected_connection,
database_name=selected_database,
schema_name=selected_schema,
table_name=selected_table,
)
if count_table == 0:
query_create_table = self.get_create_table_query(
geom_column=geom_column,
source=source,
is_snowflake_layer=False,
database_name=selected_database,
schema_name=selected_schema,
table_name=selected_table,
)
create_table(
connection_name=selected_connection, query=query_create_table
)
auth_information = get_authentification_information(
self.settings, selected_connection
)
self.sf_data_provider = SFDataProvider(auth_information)
query_select_columns = f"""
SELECT DISTINCT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_CATALOG = '{selected_database}'
AND TABLE_SCHEMA ILIKE '{selected_schema}'
AND TABLE_NAME ILIKE '{selected_table}'
"""
cur_select_columns = self.sf_data_provider.execute_query(
query_select_columns, selected_connection
)
available_columns = []
column_found = False
for row in cur_select_columns.fetchall():
if row[0].upper() == geom_column.upper():
cur_select_columns.close()
column_found = True
return True, ""
else:
available_columns.append(row[0])
if not column_found:
cur_select_columns.close()
return (
False,
f"Given Geometry Column: {geom_column} does not exist! Available columns: {', '.join(available_columns)}",
)
cur_select_columns.close()
return True, ""
except Exception as e:
return (
False,
f"There was an error while checking the parameter values. Error: {str(e)}",
)
def get_create_table_query(
self,
geom_column: str,
source: "QgsVectorLayer",
is_snowflake_layer: bool,
database_name: str,
schema_name: str,
table_name: str,
) -> str:
"""
Generates a SQL query string to create a table in Snowflake with the specified columns and types.
Args:
geom_column (str): The name of the geometry column.
source (QgsVectorLayer): The source vector layer containing the fields.
is_snowflake_layer (bool): Flag indicating if the source is a Snowflake layer.
database_name (str): The name of the database.
schema_name (str): The name of the schema.
table_name (str): The name of the table to be created.
Returns:
str: A SQL query string to create the table with the specified columns and types.
"""
query_create_table_cols = f"{geom_column} GEOGRAPHY"
for field in source.fields():
if field.name().lower() == geom_column.lower():
continue
if is_snowflake_layer:
field_to_use = field.subType()
else:
field_to_use = field.type()
query_create_table_cols += (
f",{field.name()} {self.get_field_type_from_code_type(field_to_use)}"
)
return f"""CREATE TABLE "{database_name}"."{schema_name}"."{table_name}"({query_create_table_cols})"""