forked from siddharth-krishna/nyu-thesis-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-introduction.tex
69 lines (59 loc) · 2.28 KB
/
1-introduction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
\chapter{Introduction}
\label{chp-introduction}
% Sample content:
% \lipsum[1-2]
\begin{figure}
\centering
\begin{tikzpicture}[scale=3]
\draw[step=.5cm, gray, very thin] (-1.2,-1.2) grid (1.2,1.2);
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\draw[->] (-1.25,0) -- (1.25,0) coordinate (x axis);
\draw[->] (0,-1.25) -- (0,1.25) coordinate (y axis);
\draw (0,0) circle (1cm);
\draw[very thick,red] (30:1cm) -- node[left,fill=white] {$\sin \alpha$} (30:1cm |- x axis);
\draw[very thick,blue] (30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\draw (0,0) -- (30:1cm);
\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=white] {$\xtext$};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east,fill=white] {$\ytext$};
\end{tikzpicture}
\caption{A pictorial view of \refThm{thm-pythagorean}.}
\label{fig-pythagorean}
\end{figure}
\begin{definition}
A function $f$ is said to be \emph{continuous} if its derivative exists at every point.
\end{definition}
\begin{lemma}
Let $f$ be a function whose derivative exists in every point, then $f$ is
a continuous function.
\end{lemma}
\begin{theorem}[Pythagorean theorem]
\label{thm-pythagorean}
This is a theorema about right triangles and can be summarised in the next
equation
\[ x^2 + y^2 = z^2 \]
\end{theorem}
\begin{proof}
I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.
\end{proof}
And a consequence of \refThm{thm-pythagorean} is the statement in the next
corollary~\cite{he2017physhare}.
\begin{corollary}
There's no right rectangle whose sides measure 3cm, 4cm, and 6cm.
\end{corollary}
% \lipsum[3-5]
\begin{table}
\centering
\caption{Predicted final standings of Group B.}
\begin{tabular}{l*{6}{c}r}
Team & P & W & D & L & F & A & Pts \\
\hline
Manchester United & 6 & 4 & 0 & 2 & 10 & 5 & 12 \\
Celtic & 6 & 3 & 0 & 3 & 8 & 9 & 9 \\
Benfica & 6 & 2 & 1 & 3 & 7 & 8 & 7 \\
FC Copenhagen & 6 & 2 & 1 & 3 & 5 & 8 & 7 \\
\end{tabular}
\label{tab-forecast}
\end{table}
\lipsum[5-7]