forked from ntgiang71096/vfdetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication_old.py
694 lines (499 loc) · 23.7 KB
/
application_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
from copyreg import pickle
from pydoc import classname
from model import *
import importlib
from torch import cuda
import utils
import pandas as pd
import variant_6_finetune
import preprocess_finetuned_variant_1
import preprocess_finetuned_variant_2
import preprocess_finetuned_variant_3
import preprocess_finetuned_variant_5
import preprocess_finetuned_variant_6
import preprocess_finetuned_variant_7
import preprocess_finetuned_variant_8
import patch_entities
from model import EnsembleModel
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import message_classifier
import pickle
import json
dataset_name = 'tf_vuln_dataset.csv'
variant_one_finetuned_model_path = 'model/tf_patch_variant_1_finetuned_model.sav'
variant_two_finetuned_model_path = 'model/tf_patch_variant_2_finetuned_model.sav'
variant_three_finetuned_model_path = 'model/tf_patch_variant_3_finetuned_model.sav'
variant_five_finetuned_model_path = 'model/tf_patch_variant_5_finetuned_model.sav'
variant_six_finetuned_model_path = 'model/tf_patch_variant_6_finetuned_model.sav'
variant_seven_finetuned_model_path = 'model/tf_patch_variant_7_finetuned_model.sav'
variant_eight_finetuned_model_path = 'model/tf_patch_variant_8_finetuned_model.sav'
variant_one_model_path = 'model/tf_patch_variant_1_model.sav'
variant_two_model_path = 'model/tf_patch_variant_2_model.sav'
variant_three_model_path = 'model/tf_patch_variant_3_model.sav'
variant_five_model_path = 'model/tf_patch_variant_5_model.sav'
variant_six_model_path = 'model/tf_patch_variant_6_model.sav'
variant_seven_model_path = 'model/tf_patch_variant_7_model.sav'
variant_eight_model_path = 'model/tf_patch_variant_8_model.sav'
patch_ensemble_model_path = 'model/tf_patch_ensemble.sav'
message_model_path = 'model/tf_message_classifier.sav'
issue_model_path = 'model/tf_issue_classifier.sav'
commit_classifier_model_path = 'model/tf_commit_classifier.sav'
codebert_1, codebert_2, codebert_3, codebert_5, codebert_6, codebert_7, codebert_8 = None, None, None, None, None, None, None
model_1, model_2, model_3, model_5, model_6, model_7, model_8 = None, None, None, None, None, None, None
patch_ensemble_model = None
tokenizer = None
use_cuda = cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
random_seed = 109
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def load_codebert(class_name, model_path):
m = importlib.__import__('model')
model_class = getattr(m, class_name)
model = model_class()
# model = VariantOneFinetuneClassifier()
if torch.cuda.device_count() > 1:
# print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.load_state_dict(torch.load(model_path))
code_bert = model.module.code_bert
code_bert.eval()
return code_bert
def load_model(class_name, model_path):
m = importlib.__import__('model')
model_class = getattr(m, class_name)
model = model_class()
if torch.cuda.device_count() > 1:
# print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
model.module.load_state_dict(torch.load(model_path))
model.eval()
return model
def get_variant_1_features(code_changes):
# print('Loading code_bert for variant one...')
codebert_1 = load_codebert('VariantOneFinetuneClassifier', variant_one_finetuned_model_path)
model_1 = load_model('VariantOneClassifier', variant_one_model_path)
# print('Finish loading')
code = ''
for item in code_changes:
code = code + item + '\n'
removed_code = preprocess_finetuned_variant_1.get_code_version(code, False)
added_code = preprocess_finetuned_variant_1.get_code_version(code, True)
code = removed_code + tokenizer.sep_token + added_code
codebert_1.to(device)
model_1.to(device)
embeddings = preprocess_finetuned_variant_1.get_commit_embeddings([code], tokenizer, codebert_1)
embeddings = torch.FloatTensor(embeddings)
features = model_1(embedding_batch=embeddings, need_final_feature=True)[1][0]
# codebert_1.to('cpu')
# model_1.to('cpu')
del model_1
del codebert_1
return features
def get_variant_2_features(code_changes):
# print('Loading code_bert for variant two...')
codebert_2 = load_codebert('VariantTwoFineTuneClassifier', variant_two_finetuned_model_path)
model_2 = load_model('VariantTwoClassifier', variant_two_model_path)
# print('Finish loading')
code_list = []
for diff in code_changes:
removed_code = preprocess_finetuned_variant_2.get_code_version(diff, False)
added_code = preprocess_finetuned_variant_2.get_code_version(diff, True)
code = removed_code + tokenizer.sep_token + added_code
code_list.append(code)
codebert_2.to(device)
model_2.to(device)
file_embeddings = preprocess_finetuned_variant_2.get_file_embeddings(code_list, tokenizer, codebert_2)
if len(file_embeddings) > 5:
file_embeddings = file_embeddings[:5]
while len(file_embeddings) < 5:
file_embeddings.append(patch_entities.empty_embedding)
file_embeddings = torch.FloatTensor(file_embeddings)
file_embeddings = torch.unsqueeze(file_embeddings, 0)
features = model_2(file_batch=file_embeddings, need_final_feature=True)[1][0]
codebert_2.to('cpu')
model_2.to('cpu')
del model_2
del codebert_2
return features
def get_variant_3_features(code_changes):
# print('Loading code_bert for variant three...')
codebert_3 = load_codebert('VariantThreeFineTuneOnlyClassifier', variant_three_finetuned_model_path)
model_3 = load_model('VariantThreeClassifier', variant_three_model_path)
# print('Finish loading')
embeddings = []
hunk_list = []
for item in code_changes:
hunk_list.extend(preprocess_finetuned_variant_3.get_hunk_from_diff(item))
code_list =[]
for hunk in hunk_list:
removed_code = preprocess_finetuned_variant_3.get_code_version(hunk, False)
added_code = preprocess_finetuned_variant_3.get_code_version(hunk, True)
code = removed_code + tokenizer.sep_token + added_code
code_list.append(code)
codebert_3.to(device)
model_3.to(device)
embeddings = preprocess_finetuned_variant_3.get_hunk_embeddings(code_list, tokenizer, codebert_3)
while len(embeddings) < 5:
embeddings.append([0] * len(embeddings[0]))
embeddings = torch.FloatTensor(embeddings)
embeddings = torch.unsqueeze(embeddings, 0)
features = model_3(code=embeddings, need_final_feature=True)[1][0]
# codebert_3.to('cpu')
# model_3.to('cpu')
del codebert_3
del model_3
return features
def get_variant_5_features(code_changes):
# print('Loading code_bert for variant five...')
codebert_5 = load_codebert('VariantFiveFineTuneClassifier', variant_five_finetuned_model_path)
model_5 = load_model('VariantFiveClassifier', variant_five_model_path)
# print('Finish loading')
code = ''
for item in code_changes:
code = code + item + '\n'
removed_code = tokenizer.sep_token + preprocess_finetuned_variant_5.get_code_version(code, False)
added_code = tokenizer.sep_token + preprocess_finetuned_variant_5.get_code_version(code, True)
codebert_5.to(device)
model_5.to(device)
removed_embeddings = preprocess_finetuned_variant_5.get_commit_embeddings([removed_code], tokenizer, codebert_5)
added_embeddings = preprocess_finetuned_variant_5.get_commit_embeddings([added_code], tokenizer, codebert_5)
removed_embeddings = torch.FloatTensor(removed_embeddings)
added_embeddings = torch.FloatTensor(added_embeddings)
features = model_5(before_batch=removed_embeddings, after_batch=added_embeddings, need_final_feature=True)[1][0]
# codebert_5.to('cpu')
# model_5.to('cpu')
del codebert_5
del model_5
return features
def get_variant_6_features(code_changes):
# print('Loading code_bert for variant six...')
codebert_6 = load_codebert('VariantSixFineTuneClassifier', variant_six_finetuned_model_path)
model_6 = load_model('VariantSixClassifier', variant_six_model_path)
# print('Finish loading')
removed_code_list = []
added_code_list = []
for diff in code_changes:
removed_code = tokenizer.sep_token + preprocess_finetuned_variant_6.get_code_version(diff, False)
added_code = tokenizer.sep_token + preprocess_finetuned_variant_6.get_code_version(diff, True)
removed_code_list.append(removed_code)
added_code_list.append(added_code)
codebert_6.to(device)
model_6.to(device)
removed_embeddings = preprocess_finetuned_variant_6.get_file_embeddings(removed_code_list, tokenizer, codebert_6)
added_embeddings = preprocess_finetuned_variant_6.get_file_embeddings(added_code_list, tokenizer, codebert_6)
if len(removed_embeddings) > 5:
removed_embeddings = removed_embeddings[:5]
if len(added_embeddings) > 5:
added_embeddings = added_embeddings[:5]
while len(removed_embeddings) < 5:
removed_embeddings.append(patch_entities.empty_embedding)
while len(added_embeddings) < 5:
added_embeddings.append(patch_entities.empty_embedding)
removed_embeddings = torch.FloatTensor(removed_embeddings)
added_embeddings = torch.FloatTensor(added_embeddings)
removed_embeddings = torch.unsqueeze(removed_embeddings, 0)
added_embeddings = torch.unsqueeze(added_embeddings, 0)
features = model_6(before_batch=removed_embeddings, after_batch=added_embeddings, need_final_feature=True)[1][0]
# codebert_6.to('cpu')
# model_6.to('cpu')
del codebert_6
del model_6
return features
def get_variant_7_features(code_changes):
# print('Loading code_bert for variant seven...')
codebert_7 = load_codebert('VariantSeventFineTuneOnlyClassifier', variant_seven_finetuned_model_path)
model_7 = load_model('VariantSevenClassifier', variant_seven_model_path)
# print('Finish loading')
hunk_list = []
for item in code_changes:
hunk_list.extend(preprocess_finetuned_variant_7.get_hunk_from_diff(item))
removed_code_list =[]
added_code_list = []
has_removed_code = False
has_added_code = False
for hunk in hunk_list:
removed_code = preprocess_finetuned_variant_7.get_code_version(hunk, False)
if removed_code.strip() != '':
removed_code_list.append(removed_code)
has_removed_code = True
added_code = preprocess_finetuned_variant_7.get_code_version(hunk, True)
if added_code.strip() != '':
added_code_list.append(added_code)
has_added_code = True
if not has_removed_code:
removed_code_list.append('')
if not has_added_code:
added_code_list.append('')
codebert_7.to(device)
model_7.to(device)
removed_embeddings = preprocess_finetuned_variant_7.get_hunk_embeddings(removed_code_list, tokenizer, codebert_7)
added_embeddings = preprocess_finetuned_variant_7.get_hunk_embeddings(added_code_list, tokenizer, codebert_7)
while len(removed_embeddings) < 5:
removed_embeddings.append([0] * len(removed_embeddings[0]))
while len(added_embeddings) < 5:
added_embeddings.append([0] * len(added_embeddings[0]))
removed_embeddings = torch.FloatTensor(removed_embeddings)
removed_embeddings = torch.unsqueeze(removed_embeddings, 0)
added_embeddings = torch.FloatTensor(added_embeddings)
added_embeddings = torch.unsqueeze(added_embeddings, 0)
features = model_7(before_batch=removed_embeddings, after_batch=added_embeddings, need_final_feature=True)[1][0]
codebert_7.to('cpu')
model_7.to('cpu')
del codebert_7
del model_7
return features
def get_variant_8_features(code_changes):
# print('Loading code_bert for variant eight...')
codebert_8 = load_codebert('VariantEightFineTuneOnlyClassifier', variant_eight_finetuned_model_path)
model_8 = load_model('VariantEightClassifier', variant_eight_model_path)
# print('Finish loading')
removed_code_list = []
added_code_list = []
for diff in code_changes:
removed_code = preprocess_finetuned_variant_8.get_code_version(diff, False)
added_code = preprocess_finetuned_variant_8.get_code_version(diff, True)
new_removed_code_list = preprocess_finetuned_variant_8.get_line_from_code(tokenizer.sep_token, removed_code)
new_added_code_list = preprocess_finetuned_variant_8.get_line_from_code(tokenizer.sep_token, added_code)
if len(new_removed_code_list) == 0:
new_removed_code_list = [tokenizer.sep_token]
if len(new_added_code_list) == 0:
new_added_code_list = [tokenizer.sep_token]
removed_code_list.extend(new_removed_code_list)
added_code_list.extend(new_added_code_list)
codebert_8.to(device)
model_8.to(device)
removed_embeddings = preprocess_finetuned_variant_8.get_line_embeddings(removed_code_list, tokenizer, codebert_8)
added_embeddings = preprocess_finetuned_variant_8.get_line_embeddings(added_code_list, tokenizer, codebert_8)
while len(removed_embeddings) < 5:
removed_embeddings.append([0] * len(removed_embeddings[0]))
while len(added_embeddings) < 5:
added_embeddings.append([0] * len(added_embeddings[0]))
removed_embeddings = torch.FloatTensor(removed_embeddings)
removed_embeddings = torch.unsqueeze(removed_embeddings, 0)
added_embeddings = torch.FloatTensor(added_embeddings)
added_embeddings = torch.unsqueeze(added_embeddings, 0)
features = model_8(before_batch=removed_embeddings, after_batch=added_embeddings, need_final_feature=True)[1][0]
# codebert_8.to('cpu')
# model_8.to('cpu')
# print(features.shape)
del codebert_8
del model_8
return features
def retrieve_features(code_changes_list):
features = []
print("Extracting variant 1 features")
variant_1_features = []
for code in code_changes_list:
variant_1_features.append(get_variant_1_features(code))
variant_1_features = torch.stack(variant_1_features)
features.append(variant_1_features)
print("Extracting variant 2 features")
variant_2_features = []
for code in code_changes_list:
variant_2_features.append(get_variant_2_features(code))
variant_2_features = torch.stack(variant_2_features)
features.append(variant_2_features)
print("Extracting variant 3 features")
variant_3_features = []
for code in code_changes_list:
variant_3_features.append(get_variant_3_features(code))
variant_3_features = torch.stack(variant_3_features)
features.append(variant_3_features)
print("Extracting variant 5 features")
variant_5_features = []
for code in code_changes_list:
variant_5_features.append(get_variant_5_features(code))
variant_5_features = torch.stack(variant_5_features)
features.append(variant_5_features)
print("Extracting variant 6 features")
variant_6_features = []
for code in code_changes_list:
variant_6_features.append(get_variant_6_features(code))
variant_6_features = torch.stack(variant_6_features)
features.append(variant_6_features)
print("Extracting variant 7 features")
variant_7_features = []
for code in code_changes_list:
variant_7_features.append(get_variant_7_features(code))
variant_7_features = torch.stack(variant_7_features)
features.append(variant_7_features)
print("Extracting variant 8 features")
variant_8_features = []
for code in code_changes_list:
variant_8_features.append(get_variant_8_features(code))
variant_8_features = torch.stack(variant_8_features)
features.append(variant_8_features)
return features
def predict_patch(code_changes_list):
# global codebert_1, codebert_2, codebert_3, codebert_5, codebert_6, codebert_7, codebert_8
# global model_1, model_2, model_3, model_5, model_6, model_7, model_8
global tokenizer
tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
# print('Loading code_bert for variant one...')
# codebert_1 = load_codebert('VariantOneFinetuneClassifier', variant_one_finetuned_model_path)
# model_1 = load_model('VariantOneClassifier', variant_one_model_path)
# print('Finish loading')
# print('Loading code_bert for variant two...')
# codebert_2 = load_codebert('VariantTwoFineTuneClassifier', variant_two_finetuned_model_path)
# model_2 = load_model('VariantTwoClassifier', variant_two_model_path)
# print('Finish loading')
# print('Loading code_bert for variant three...')
# codebert_3 = load_codebert('VariantThreeFineTuneOnlyClassifier', variant_three_finetuned_model_path)
# model_3 = load_model('VariantThreeClassifier', variant_three_model_path)
# print('Finish loading')
# print('Loading code_bert for variant five...')
# codebert_5 = load_codebert('VariantFiveFineTuneClassifier', variant_five_finetuned_model_path)
# model_5 = load_model('VariantFiveClassifier', variant_five_model_path)
# print('Finish loading')
# print('Loading code_bert for variant six...')
# codebert_6 = load_codebert('VariantSixFineTuneClassifier', variant_six_finetuned_model_path)
# model_6 = load_model('VariantSixClassifier', variant_six_model_path)
# print('Finish loading')
# print('Loading code_bert for variant seven...')
# codebert_7 = load_codebert('VariantSeventFineTuneOnlyClassifier', variant_seven_finetuned_model_path)
# model_7 = load_model('VariantSevenClassifier', variant_seven_model_path)
# print('Finish loading')
print('Loading code_bert for variant eight...')
codebert_8 = load_codebert('VariantEightFineTuneOnlyClassifier', variant_eight_finetuned_model_path)
model_8 = load_model('VariantEightClassifier', variant_eight_model_path)
print('Finish loading')
print('Loading patch ensemble classifier...')
patch_ensemble_model = EnsembleModel()
if torch.cuda.device_count() > 1:
patch_ensemble_model = nn.DataParallel(patch_ensemble_model)
patch_ensemble_model.load_state_dict(torch.load(patch_ensemble_model_path))
patch_ensemble_model.eval()
print('Finish loading')
print("Calculating features...")
feature_list = retrieve_features(code_changes_list)
print("Done!")
patch_ensemble_model.to(device)
outs = patch_ensemble_model(feature_list[0], feature_list[1], feature_list[2], feature_list[3], feature_list[4], feature_list[5], feature_list[6])
outs = F.softmax(outs, dim=1)
patch_ensemble_model.to('cpu')
probs = []
for item in outs.tolist():
probs.append(item[1])
print(probs)
# return outs.tolist()[0][1]
def predict_message(message_list):
print("Loading message classifier...")
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
model.to(device)
model.load_state_dict(torch.load(message_model_path))
model.eval()
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
print("Finish loading")
print("Infering...")
inputs = tokenizer(message_list, padding='max_length', max_length=128, truncation=True, return_tensors="pt")
input_ids = inputs.data['input_ids']
masks = inputs.data['attention_mask']
# input_ids = torch.unsqueeze(input_ids, 0)
# masks = torch.unsqueeze(masks, 0)
input_ids = input_ids.to(device)
masks = masks.to(device)
outs = model(input_ids, masks)
del model
# print(torch.argmax(outs.logits, dim=1).tolist())
return F.softmax(outs.logits, dim=1).tolist()[0][1]
def predict_issue(text_list):
print("Loading issue classifier...")
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
model.to(device)
model.load_state_dict(torch.load(issue_model_path))
model.eval()
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
# input_ids, masks = message_classifier.get_roberta_features(tokenizer, [text], length=256)[0]
inputs = tokenizer(text_list, padding='max_length', max_length=256, truncation=True, return_tensors="pt")
input_ids = inputs.data['input_ids']
masks = inputs.data['attention_mask']
print("Finish loading")
print("Infering...")
# input_ids = torch.unsqueeze(input_ids, 0)
# masks = torch.unsqueeze(masks, 0)
input_ids = input_ids.to(device)
masks = masks.to(device)
outs = model(input_ids, masks)
# print(torch.argmax(outs.logits, dim=1).tolist())
del model
return F.softmax(outs.logits, dim=1).tolist()[0][1]
def predict_ensemble(model, message_prob, issue_prob, patch_prob):
return model.predict_proba([[message_prob, issue_prob, patch_prob]])[0][1]
def batch_predict(file_path, output_file_path):
with open(file_path, 'r') as reader:
item_list = json.loads(reader.read())
message_list = []
message_id = []
issue_list = []
issue_id = []
# list of code changes
patch_list = []
patch_id = []
id_list = []
for item in item_list:
id = item['id']
id_list.append(id)
if 'message' in item:
message_list.append(item['message'])
message_id.append(id)
if 'issue' in item:
issue_list.append(item['issue'])
issue_id.append(id)
if 'patch' in item:
patch_list.append(item['patch'])
patch_id.append(id)
msg_probs = predict_message(message_list)
issue_probs = predict_issue(issue_list)
patch_probs = predict_patch(patch_list)
id_to_msg_prob = {}
for i, prob in enumerate(msg_probs):
id_to_msg_prob[message_id[i]] = prob
id_to_issue_prob = {}
for i, prob in enumerate(issue_probs):
id_to_issue_prob[issue_id[i]] = prob
id_to_patch_prob = {}
for i, prob in enumerate(patch_probs):
id_to_patch_prob[patch_id[i]] = prob
id_to_commit_prob = {}
model = pickle.load(open(commit_classifier_model_path, 'rb'))
for id in id_list:
if id in id_to_msg_prob and id in id_to_issue_prob and id in id_to_patch_prob:
id_to_commit_prob[id] = predict_ensemble(model, id_to_msg_prob[id], id_to_issue_prob[id], id_to_patch_prob[id])
output_list = []
for id in id_list:
output = {}
output['id'] = id
if id in id_to_msg_prob:
output['message_prob'] = id_to_msg_prob[id]
if id in id_to_issue_prob:
output['issue_prob'] = id_to_issue_prob[id]
if id in id_to_patch_prob:
output['patch_prob'] = id_to_patch_prob[id]
if id in id_to_commit_prob:
output['commit_prob'] = id_to_commit_prob[id]
output_list.append(output)
json.dump(output_list, open(output_file_path, 'w'))
def get_code_changes_sample(index):
patch_data, label_data, url_data = variant_6_finetune.get_data(dataset_name)
code_changes = patch_data['test'][index]
label = label_data['test'][index]
for code in code_changes:
print(json.dumps(code))
print()
print('*' * 32)
print()
print(label)
return code_changes
if __name__== '__main__':
probs = predict_issue(['right after install TensorFlowLiteObjC , by pod install, cause error in Xcode'])
print()
# predict_message('Prevent memory leak in decoding PNG images. PiperOrigin-RevId: 409300653 Change-Id: I6182124c545989cef80cefd439b659095920763b')
# print(predict_ensemble(0.9, 0.8, 0.9))
predict_patch([get_code_changes_sample(1), get_code_changes_sample(5)])
# get_code_changes_sample(5)
# batch_predict('sample_1.json', 'prediction_sample_1.json')