-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgmmunpak.m
54 lines (49 loc) · 1.73 KB
/
gmmunpak.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function mix = gmmunpak(mix, p)
%GMMUNPAK Separates a vector of Gaussian mixture model parameters into its components.
%
% Description
% MIX = GMMUNPAK(MIX, P) takes a GMM data structure MIX and a single
% row vector of parameters P and returns a mixture data structure
% identical to the input MIX, except that the mixing coefficients
% PRIORS, centres CENTRES and covariances COVARS (and, for PPCA, the
% lambdas and U (PCA sub-spaces)) are all set to the corresponding
% elements of P.
%
% See also
% GMM, GMMPAK
%
% Copyright (c) Ian T Nabney (1996-2001)
errstring = consist(mix, 'gmm');
if ~errstring
error(errstring);
end
if mix.nwts ~= length(p)
error('Invalid weight vector length')
end
mark1 = mix.ncentres;
mark2 = mark1 + mix.ncentres*mix.nin;
mix.priors = reshape(p(1:mark1), 1, mix.ncentres);
mix.centres = reshape(p(mark1 + 1:mark2), mix.ncentres, mix.nin);
switch mix.covar_type
case 'spherical'
mark3 = mix.ncentres*(2 + mix.nin);
mix.covars = reshape(p(mark2 + 1:mark3), 1, mix.ncentres);
case 'diag'
mark3 = mix.ncentres*(1 + mix.nin + mix.nin);
mix.covars = reshape(p(mark2 + 1:mark3), mix.ncentres, mix.nin);
case 'full'
mark3 = mix.ncentres*(1 + mix.nin + mix.nin*mix.nin);
mix.covars = reshape(p(mark2 + 1:mark3), mix.nin, mix.nin, ...
mix.ncentres);
case 'ppca'
mark3 = mix.ncentres*(2 + mix.nin);
mix.covars = reshape(p(mark2 + 1:mark3), 1, mix.ncentres);
% Now also extract k and eigenspaces
mark4 = mark3 + mix.ncentres*mix.ppca_dim;
mix.lambda = reshape(p(mark3 + 1:mark4), mix.ncentres, ...
mix.ppca_dim);
mix.U = reshape(p(mark4 + 1:end), mix.nin, mix.ppca_dim, ...
mix.ncentres);
otherwise
error(['Unknown covariance type ', mix.covar_type]);
end