-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpr_loqo.c
614 lines (503 loc) · 16.2 KB
/
pr_loqo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
* File: pr_loqo.c
* Purpose: solves quadratic programming problem for pattern recognition
* for support vectors
*
* Author: Alex J. Smola
* Created: 10/14/97
* Updated: 11/08/97
*
*
* Copyright (c) 1997 GMD Berlin - All rights reserved
* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE of GMD Berlin
* The copyright notice above does not evidence any
* actual or intended publication of this work.
*
* Unauthorized commercial use of this software is not allowed
*/
#include <math.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include "pr_loqo.h"
#define max(A, B) ((A) > (B) ? (A) : (B))
#define min(A, B) ((A) < (B) ? (A) : (B))
#define sqr(A) ((A) * (A))
#define ABS(A) ((A) > 0 ? (A) : (-(A)))
#define PREDICTOR 1
#define CORRECTOR 2
/*****************************************************************
replace this by any other function that will exit gracefully
in a larger system
***************************************************************/
void nrerror(char error_text[])
{
printf("ERROR: terminating program - %s\n", error_text);
exit(1);
}
/*****************************************************************
taken from numerical recipes and modified to accept pointers
moreover numerical recipes code seems to be buggy (at least the
ones on the web)
cholesky solver and backsubstitution
leaves upper right triangle intact (rows first order)
***************************************************************/
void choldc(double a[], int n, double p[])
{
void nrerror(char error_text[]);
int i, j, k;
double sum;
for (i = 0; i < n; i++){
for (j = i; j < n; j++) {
sum=a[n*i + j];
for (k=i-1; k>=0; k--) sum -= a[n*i + k]*a[n*j + k];
if (i == j) {
if (sum <= 0.0)
nrerror("choldc failed, matrix not positive definite");
p[i]=sqrt(sum);
} else a[n*j + i] = sum/p[i];
}
}
}
void cholsb(double a[], int n, double p[], double b[], double x[])
{
int i, k;
double sum;
for (i=0; i<n; i++) {
sum=b[i];
for (k=i-1; k>=0; k--) sum -= a[n*i + k]*x[k];
x[i]=sum/p[i];
}
for (i=n-1; i>=0; i--) {
sum=x[i];
for (k=i+1; k<n; k++) sum -= a[n*k + i]*x[k];
x[i]=sum/p[i];
}
}
/*****************************************************************
sometimes we only need the forward or backward pass of the
backsubstitution, hence we provide these two routines separately
***************************************************************/
void chol_forward(double a[], int n, double p[], double b[], double x[])
{
int i, k;
double sum;
for (i=0; i<n; i++) {
sum=b[i];
for (k=i-1; k>=0; k--) sum -= a[n*i + k]*x[k];
x[i]=sum/p[i];
}
}
void chol_backward(double a[], int n, double p[], double b[], double x[])
{
int i, k;
double sum;
for (i=n-1; i>=0; i--) {
sum=b[i];
for (k=i+1; k<n; k++) sum -= a[n*k + i]*x[k];
x[i]=sum/p[i];
}
}
/*****************************************************************
solves the system | -H_x A' | |x_x| = |c_x|
| A H_y| |x_y| |c_y|
with H_x (and H_y) positive (semidefinite) matrices
and n, m the respective sizes of H_x and H_y
for variables see pg. 48 of notebook or do the calculations on a
sheet of paper again
predictor solves the whole thing, corrector assues that H_x didn't
change and relies on the results of the predictor. therefore do
_not_ modify workspace
if you want to speed tune anything in the code here's the right
place to do so: about 95% of the time is being spent in
here. something like an iterative refinement would be nice,
especially when switching from double to single precision. if you
have a fast parallel cholesky use it instead of the numrec
implementations.
side effects: changes H_y (but this is just the unit matrix or zero anyway
in our case)
***************************************************************/
void solve_reduced(int n, int m, double h_x[], double h_y[],
double a[], double x_x[], double x_y[],
double c_x[], double c_y[],
double workspace[], int step)
{
int i,j,k;
double *p_x;
double *p_y;
double *t_a;
double *t_c;
double *t_y;
p_x = workspace; /* together n + m + n*m + n + m = n*(m+2)+2*m */
p_y = p_x + n;
t_a = p_y + m;
t_c = t_a + n*m;
t_y = t_c + n;
if (step == PREDICTOR) {
choldc(h_x, n, p_x); /* do cholesky decomposition */
for (i=0; i<m; i++) /* forward pass for A' */
chol_forward(h_x, n, p_x, a+i*n, t_a+i*n);
for (i=0; i<m; i++) /* compute (h_y + a h_x^-1A') */
for (j=i; j<m; j++)
for (k=0; k<n; k++)
h_y[m*i + j] += t_a[n*j + k] * t_a[n*i + k];
choldc(h_y, m, p_y); /* and cholesky decomposition */
}
chol_forward(h_x, n, p_x, c_x, t_c);
/* forward pass for c */
for (i=0; i<m; i++) { /* and solve for x_y */
t_y[i] = c_y[i];
for (j=0; j<n; j++)
t_y[i] += t_a[i*n + j] * t_c[j];
}
cholsb(h_y, m, p_y, t_y, x_y);
for (i=0; i<n; i++) { /* finally solve for x_x */
t_c[i] = -t_c[i];
for (j=0; j<m; j++)
t_c[i] += t_a[j*n + i] * x_y[j];
}
chol_backward(h_x, n, p_x, t_c, x_x);
}
/*****************************************************************
matrix vector multiplication (symmetric matrix but only one triangle
given). computes m*x = y
no need to tune it as it's only of O(n^2) but cholesky is of
O(n^3). so don't waste your time _here_ although it isn't very
elegant.
***************************************************************/
void matrix_vector(int n, double m[], double x[], double y[])
{
int i, j;
for (i=0; i<n; i++) {
y[i] = m[(n+1) * i] * x[i];
for (j=0; j<i; j++)
y[i] += m[i + n*j] * x[j];
for (j=i+1; j<n; j++)
y[i] += m[n*i + j] * x[j];
}
}
/*****************************************************************
call only this routine; this is the only one you're interested in
for doing quadratical optimization
the restart feature exists but it may not be of much use due to the
fact that an initial setting, although close but not very close the
the actual solution will result in very good starting diagnostics
(primal and dual feasibility and small infeasibility gap) but incur
later stalling of the optimizer afterwards as we have to enforce
positivity of the slacks.
***************************************************************/
int pr_loqo(int n, int m, double c[], double h_x[], double a[], double b[],
double l[], double u[], double primal[], double dual[],
int verb, double sigfig_max, int counter_max,
double margin, double bound, int restart)
{
/* the knobs to be tuned ... */
/* double margin = -0.95; we will go up to 95% of the
distance between old variables and zero */
/* double bound = 10; preset value for the start. small
values give good initial
feasibility but may result in slow
convergence afterwards: we're too
close to zero */
/* to be allocated */
double *workspace;
double *diag_h_x;
double *h_y;
double *c_x;
double *c_y;
double *h_dot_x;
double *rho;
double *nu;
double *tau;
double *sigma;
double *gamma_z;
double *gamma_s;
double *hat_nu;
double *hat_tau;
double *delta_x;
double *delta_y;
double *delta_s;
double *delta_z;
double *delta_g;
double *delta_t;
double *d;
/* from the header - pointers into primal and dual */
double *x;
double *y;
double *g;
double *z;
double *s;
double *t;
/* auxiliary variables */
double b_plus_1;
double c_plus_1;
double x_h_x;
double primal_inf;
double dual_inf;
double sigfig;
double primal_obj, dual_obj;
double mu;
double alfa, step;
int counter = 0;
int status = STILL_RUNNING;
int i,j,k;
/* memory allocation */
workspace = malloc((n*(m+2)+2*m)*sizeof(double));
diag_h_x = malloc(n*sizeof(double));
h_y = malloc(m*m*sizeof(double));
c_x = malloc(n*sizeof(double));
c_y = malloc(m*sizeof(double));
h_dot_x = malloc(n*sizeof(double));
rho = malloc(m*sizeof(double));
nu = malloc(n*sizeof(double));
tau = malloc(n*sizeof(double));
sigma = malloc(n*sizeof(double));
gamma_z = malloc(n*sizeof(double));
gamma_s = malloc(n*sizeof(double));
hat_nu = malloc(n*sizeof(double));
hat_tau = malloc(n*sizeof(double));
delta_x = malloc(n*sizeof(double));
delta_y = malloc(m*sizeof(double));
delta_s = malloc(n*sizeof(double));
delta_z = malloc(n*sizeof(double));
delta_g = malloc(n*sizeof(double));
delta_t = malloc(n*sizeof(double));
d = malloc(n*sizeof(double));
/* pointers into the external variables */
x = primal; /* n */
g = x + n; /* n */
t = g + n; /* n */
y = dual; /* m */
z = y + m; /* n */
s = z + n; /* n */
/* initial settings */
b_plus_1 = 1;
c_plus_1 = 0;
for (i=0; i<n; i++) c_plus_1 += c[i];
/* get diagonal terms */
for (i=0; i<n; i++) diag_h_x[i] = h_x[(n+1)*i];
/* starting point */
if (restart == 1) {
/* x, y already preset */
for (i=0; i<n; i++) { /* compute g, t for primal feasibility */
g[i] = max(ABS(x[i] - l[i]), bound);
t[i] = max(ABS(u[i] - x[i]), bound);
}
matrix_vector(n, h_x, x, h_dot_x); /* h_dot_x = h_x * x */
for (i=0; i<n; i++) { /* sigma is a dummy variable to calculate z, s */
sigma[i] = c[i] + h_dot_x[i];
for (j=0; j<m; j++)
sigma[i] -= a[n*j + i] * y[j];
if (sigma[i] > 0) {
s[i] = bound;
z[i] = sigma[i] + bound;
}
else {
s[i] = bound - sigma[i];
z[i] = bound;
}
}
}
else { /* use default start settings */
for (i=0; i<m; i++)
for (j=i; j<m; j++)
h_y[i*m + j] = (i==j) ? 1 : 0;
for (i=0; i<n; i++) {
c_x[i] = c[i];
h_x[(n+1)*i] += 1;
}
for (i=0; i<m; i++)
c_y[i] = b[i];
/* and solve the system [-H_x A'; A H_y] [x, y] = [c_x; c_y] */
solve_reduced(n, m, h_x, h_y, a, x, y, c_x, c_y, workspace,
PREDICTOR);
/* initialize the other variables */
for (i=0; i<n; i++) {
g[i] = max(ABS(x[i] - l[i]), bound);
z[i] = max(ABS(x[i]), bound);
t[i] = max(ABS(u[i] - x[i]), bound);
s[i] = max(ABS(x[i]), bound);
}
}
for (i=0, mu=0; i<n; i++)
mu += z[i] * g[i] + s[i] * t[i];
mu = mu / (2*n);
/* the main loop */
if (verb >= STATUS) {
printf("counter | pri_inf | dual_inf | pri_obj | dual_obj | ");
printf("sigfig | alpha | nu \n");
printf("-------------------------------------------------------");
printf("---------------------------\n");
}
while (status == STILL_RUNNING) {
/* predictor */
/* put back original diagonal values */
for (i=0; i<n; i++)
h_x[(n+1) * i] = diag_h_x[i];
matrix_vector(n, h_x, x, h_dot_x); /* compute h_dot_x = h_x * x */
for (i=0; i<m; i++) {
rho[i] = b[i];
for (j=0; j<n; j++)
rho[i] -= a[n*i + j] * x[j];
}
for (i=0; i<n; i++) {
nu[i] = l[i] - x[i] + g[i];
tau[i] = u[i] - x[i] - t[i];
sigma[i] = c[i] - z[i] + s[i] + h_dot_x[i];
for (j=0; j<m; j++)
sigma[i] -= a[n*j + i] * y[j];
gamma_z[i] = - z[i];
gamma_s[i] = - s[i];
}
/* instrumentation */
x_h_x = 0;
primal_inf = 0;
dual_inf = 0;
for (i=0; i<n; i++) {
x_h_x += h_dot_x[i] * x[i];
primal_inf += sqr(tau[i]);
primal_inf += sqr(nu[i]);
dual_inf += sqr(sigma[i]);
}
for (i=0; i<m; i++)
primal_inf += sqr(rho[i]);
primal_inf = sqrt(primal_inf)/b_plus_1;
dual_inf = sqrt(dual_inf)/c_plus_1;
primal_obj = 0.5 * x_h_x;
dual_obj = -0.5 * x_h_x;
for (i=0; i<n; i++) {
primal_obj += c[i] * x[i];
dual_obj += l[i] * z[i] - u[i] * s[i];
}
for (i=0; i<m; i++)
dual_obj += b[i] * y[i];
sigfig = log10(ABS(primal_obj) + 1) -
log10(ABS(primal_obj - dual_obj));
sigfig = max(sigfig, 0);
/* the diagnostics - after we computed our results we will
analyze them */
if (counter > counter_max) status = ITERATION_LIMIT;
if (sigfig > sigfig_max) status = OPTIMAL_SOLUTION;
if (primal_inf > 10e100) status = PRIMAL_INFEASIBLE;
if (dual_inf > 10e100) status = DUAL_INFEASIBLE;
if ((primal_inf > 10e100) & (dual_inf > 10e100)) status = PRIMAL_AND_DUAL_INFEASIBLE;
if (ABS(primal_obj) > 10e100) status = PRIMAL_UNBOUNDED;
if (ABS(dual_obj) > 10e100) status = DUAL_UNBOUNDED;
/* write some nice routine to enforce the time limit if you
_really_ want, however it's quite useless as you can compute
the time from the maximum number of iterations as every
iteration costs one cholesky decomposition plus a couple of
backsubstitutions */
/* generate report */
if ((verb >= FLOOD) | ((verb == STATUS) & (status != 0)))
printf("%7i | %.2e | %.2e | % .2e | % .2e | %6.3f | %.4f | %.2e\n",
counter, primal_inf, dual_inf, primal_obj, dual_obj,
sigfig, alfa, mu);
counter++;
if (status == 0) { /* we may keep on going, otherwise
it'll cost one loop extra plus a
messed up main diagonal of h_x */
/* intermediate variables (the ones with hat) */
for (i=0; i<n; i++) {
hat_nu[i] = nu[i] + g[i] * gamma_z[i] / z[i];
hat_tau[i] = tau[i] - t[i] * gamma_s[i] / s[i];
/* diagonal terms */
d[i] = z[i] / g[i] + s[i] / t[i];
}
/* initialization before the cholesky solver */
for (i=0; i<n; i++) {
h_x[(n+1)*i] = diag_h_x[i] + d[i];
c_x[i] = sigma[i] - z[i] * hat_nu[i] / g[i] -
s[i] * hat_tau[i] / t[i];
}
for (i=0; i<m; i++) {
c_y[i] = rho[i];
for (j=i; j<m; j++)
h_y[m*i + j] = 0;
}
/* and do it */
solve_reduced(n, m, h_x, h_y, a, delta_x, delta_y, c_x, c_y, workspace,
PREDICTOR);
for (i=0; i<n; i++) {
/* backsubstitution */
delta_s[i] = s[i] * (delta_x[i] - hat_tau[i]) / t[i];
delta_z[i] = z[i] * (hat_nu[i] - delta_x[i]) / g[i];
delta_g[i] = g[i] * (gamma_z[i] - delta_z[i]) / z[i];
delta_t[i] = t[i] * (gamma_s[i] - delta_s[i]) / s[i];
/* central path (corrector) */
gamma_z[i] = mu / g[i] - z[i] - delta_z[i] * delta_g[i] / g[i];
gamma_s[i] = mu / t[i] - s[i] - delta_s[i] * delta_t[i] / t[i];
/* (some more intermediate variables) the hat variables */
hat_nu[i] = nu[i] + g[i] * gamma_z[i] / z[i];
hat_tau[i] = tau[i] - t[i] * gamma_s[i] / s[i];
/* initialization before the cholesky */
c_x[i] = sigma[i] - z[i] * hat_nu[i] / g[i] - s[i] * hat_tau[i] / t[i];
}
for (i=0; i<m; i++) { /* comput c_y and rho */
c_y[i] = rho[i];
for (j=i; j<m; j++)
h_y[m*i + j] = 0;
}
/* and do it */
solve_reduced(n, m, h_x, h_y, a, delta_x, delta_y, c_x, c_y, workspace,
CORRECTOR);
for (i=0; i<n; i++) {
/* backsubstitution */
delta_s[i] = s[i] * (delta_x[i] - hat_tau[i]) / t[i];
delta_z[i] = z[i] * (hat_nu[i] - delta_x[i]) / g[i];
delta_g[i] = g[i] * (gamma_z[i] - delta_z[i]) / z[i];
delta_t[i] = t[i] * (gamma_s[i] - delta_s[i]) / s[i];
}
alfa = -1;
for (i=0; i<n; i++) {
alfa = min(alfa, delta_g[i]/g[i]);
alfa = min(alfa, delta_t[i]/t[i]);
alfa = min(alfa, delta_s[i]/s[i]);
alfa = min(alfa, delta_z[i]/z[i]);
}
alfa = (margin - 1) / alfa;
/* compute mu */
for (i=0, mu=0; i<n; i++)
mu += z[i] * g[i] + s[i] * t[i];
mu = mu / (2*n);
mu = mu * sqr((alfa - 1) / (alfa + 10));
for (i=0; i<n; i++) {
x[i] += alfa * delta_x[i];
g[i] += alfa * delta_g[i];
t[i] += alfa * delta_t[i];
z[i] += alfa * delta_z[i];
s[i] += alfa * delta_s[i];
}
for (i=0; i<m; i++)
y[i] += alfa * delta_y[i];
}
}
if ((status == 1) && (verb >= STATUS)) {
printf("----------------------------------------------------------------------------------\n");
printf("optimization converged\n");
}
/* free memory */
free(workspace);
free(diag_h_x);
free(h_y);
free(c_x);
free(c_y);
free(h_dot_x);
free(rho);
free(nu);
free(tau);
free(sigma);
free(gamma_z);
free(gamma_s);
free(hat_nu);
free(hat_tau);
free(delta_x);
free(delta_y);
free(delta_s);
free(delta_z);
free(delta_g);
free(delta_t);
free(d);
/* and return to sender */
return status;
}