Skip to content

Latest commit

 

History

History
307 lines (241 loc) · 15.6 KB

README.md

File metadata and controls

307 lines (241 loc) · 15.6 KB

Analyzing How BERT Performs Entity Matching

State-of-the-art Entity Matching (EM) approaches rely on transformer architectures, such as BERT, for generating highly contextualized embeddings of terms. The embeddings are then used to predict whether pairs of entity descriptions refer to the same real-world entity. BERT-based EM models demonstrated to be effective, but act as black-boxes for the users, who have limited insight into the motivations behind their decisions. In this repo, we perform a multi-facet analysis of the components of pre-trained and fine-tuned BERT architectures applied to an EM task.

For a detailed description of the work please read our paper. Please cite the paper if you use the code from this repository in your work.

@article{DBLP:journals/pvldb/PaganelliBBG22,
  author    = {Matteo Paganelli and
               Francesco Del Buono and
               Andrea Baraldi and
               Francesco Guerra},
  title     = {Analyzing How {BERT} Performs Entity Matching},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {8},
  pages     = {1726--1738},
  year      = {2022}
}

Library

Requirements

  • Python: Python 3.*
  • Packages: requirements.txt

Installation

$ virtualenv -p python3 venv

$ source venv/bin/activate

$ pip install -r requirements.txt

Experiments

Create BERT-based EM models

This means to create a binary classifier on top of the BERT model. For purely demonstrative purposes, below we will train the EM model only on the dataset Structured_Fodors-Zagats.

Option 1: pre-trained EM model. Only the classification layer is fine-tuned on the EM task.

  python -m utils.bert_em_pretrain --use_cases Structured_Fodors-Zagats --tok sent_pair --experiment compute_features
  python -m utils.bert_em_pretrain --use_cases Structured_Fodors-Zagats --tok sent_pair --experiment train

Option 2: fine-tuned EM model. Both the BERT architecture and the classification layer are fine-tuned on the EM task.

  python -m utils.bert_em_fine_tuning --fit True --use_cases Structured_Fodors-Zagats --tok sent_pair

The model will be stored in the directory results/models/.

Experiment Sec. 4.1 (Tab. 2)

Pre-trained EM model

  python -m utils.bert_em_pretrain --use_cases all --tok sent_pair --experiment eval
  python -m utils.bert_em_pretrain --use_cases all --tok attr_pair --experiment eval

Fine-tuned EM model

  python -m utils.bert_em_fine_tuning --fit False --use_cases all --tok sent_pair
  python -m utils.bert_em_fine_tuning --fit False --use_cases all --tok attr_pair

Experiment Sec. 4.2 (Fig. 1)

  python -m experiments.fine_tuning_impact_on_attention.py --use_cases all

Experiment Sec. 4.3 (Fig. 2)

  python -m experiments.fine_tuning_impact_on_embeddings.py --use_cases all

Experiment Sec. 5.1 (Fig. 3)

Prerequisites

  python -m experiments.get_attention_weights.py --use_cases all --multi_process True --attn_extractor token_extractor --special_tokens True --agg_metric mean --fine_tune False	
  python -m experiments.get_attention_weights.py --use_cases all --multi_process True --attn_extractor token_extractor --special_tokens True --agg_metric mean --fine_tune True

Run the experiment

  python -m experiments.e2e_attention.py --use_cases Structured_Amazon-Google Structured_Beer Textual_Abt-Buy Dirty_Walmart-Amazon --experiment comparison --comparison tune --small_plot True
  python -m experiments.e2e_attention.py --use_cases Structured_Amazon-Google Structured_Beer Textual_Abt-Buy Dirty_Walmart-Amazon --fine_tune True --experiment simple --small_plot True

Experiment Sec. 5.2 (Fig. 4)

Prerequisites

  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric max --fine_tune False --attn_tester attr_tester

Run the experiment

  python -m experiments.attention.attention_test.py --use_cases all --attn_extractor attr_extractor --agg_metric max --fine_tune False --attn_tester attr_tester --analysis_target benchmark --analysis_type multi --plot_params attr_attn_3_last

Experiment Sec. 5.2 (Fig. 5)

Prerequisites

  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --fine_tune False --tok sent_pair --attn_tester attr_pattern_tester
  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --fine_tune False --tok attr_pair --attn_tester attr_pattern_tester
  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --fine_tune True --tok sent_pair --attn_tester attr_pattern_tester
  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --fine_tune True --tok attr_pair --attn_tester attr_pattern_tester

Run the experiment

  python -m experiments.attention.attention_patterns.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --attn_tester attr_pattern_tester --experiment all_freq --analysis_type comparison --comparison_param tune_tok

Experiment Sec. 5.2.1 (Fig. 6)

Prerequisites

  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --fine_tune False --tok sent_pair --attn_tester attr_pattern_tester
  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --fine_tune True --tok sent_pair --attn_tester attr_pattern_tester

Run the experiment

  python -m experiments.attention.attention_patterns.py --use_cases all --attn_extractor attr_extractor --agg_metric mean --attn_tester attr_pattern_tester --experiment match_freq_by_layer --analysis_type comparison --comparison_param tune

Experiment Sec. 5.2.1 (Fig. 7)

Prerequisites

  python -m experiments.attention.analyze_attention_weights.py --use_cases all --attn_extractor attr_extractor --agg_metric max --fine_tune True --attn_tester attr_tester

Run the experiment

  python -m experiments.attention.attention_head_pruning.py --use_cases all --attn_extractor attr_extractor --agg_metric max --attn_tester attr_tester --task compute --prune_or_mask_methods importance maa random --prune_or_mask_amounts 5 10 20 50 100 --prune True
  python -m experiments.attention.attention_head_pruning.py --use_cases all --attn_extractor attr_extractor --agg_metric max --attn_tester attr_tester --task visualize --prune_or_mask_methods importance maa random --prune_or_mask_amounts 5 10 20 50 100 --prune True

Experiment Sec. 5.3.1 (Fig. 8)

Prerequisites

  python -m experiments.attention.get_attention_weights.py --use_cases all --multi_process True --attn_extractor attr_extractor --special_tokens True --agg_metric max --fine_tune True
  python -m experiments.attention.get_attention_weights.py --use_cases all --multi_process True --attn_extractor attr_extractor --special_tokens True --agg_metric max --fine_tune False

Run the experiment

  python -m experiments.attention.cls_to_attr_attention.py --use_cases Structured_Fodors-Zagats Structured_DBLP-GoogleScholar Structured_DBLP-ACM Dirty_DBLP-ACM --attn_extractor attr_extractor --agg_metric max --experiment comparison --comparison tune --small_plot True
  python -m experiments.attention.cls_to_attr_attention.py --use_cases Structured_Fodors-Zagats Structured_DBLP-GoogleScholar Structured_DBLP-ACM Dirty_DBLP-ACM --attn_extractor attr_extractor --agg_metric max --experiment simple --small_plot True --fine_tune True --data_categories all_pos all_neg

Experiment Sec. 5.3.2 (Fig. 9)

Prerequisites

  python -m experiments.gradient.get_grads.py --use_cases all --grad_text_units attrs --multi_process True

Run the experiment

  python -m experiments.gradient.plot_grads.py --use_cases all --grad_text_units attrs

Experiment Sec. 6.1 (Fig. 10)

Prerequisites

Download the fasttext embeddings (wiki-news-300d-1M) from here and save them in the data folder.

  python -m experiments.get_attention_weights.py --use_cases all --multi_process True --attn_extractor word_extractor --special_tokens True --agg_metric mean --fine_tune False
  python -m experiments.get_attention_weights.py --use_cases all --multi_process True --attn_extractor word_extractor --special_tokens True --agg_metric mean --fine_tune True

Run the experiment

  python -m experiments.attention_to_similar_words.py --use_cases all --sim_metric cosine --sem_embs fasttext --fine_tune False --task compute
  python -m experiments.attention_to_similar_words.py --use_cases all --sim_metric cosine --sem_embs fasttext --fine_tune True --task compute
  python -m experiments.attention_to_similar_words.py --use_cases all --sim_metric cosine --task visualize

Experiment Sec. 6.2 (Fig. 11)

(Optional) Prerequisites

Download the fasttext embeddings (wiki-news-300d-1M) from here and save them in the data folder.

If the experiment in Sec. 4.3 has been run with the flag --save_embs, in the following experiment we can avoid re-computing the embeddings by specifying the option --precomputed_embs True

Run the experiment

  python -m experiments.emb_sym_analysis.py --use_cases all --sim_metric cosine --sem_embs fasttext --fine_tune False --task compute
  python -m experiments.emb_sym_analysis.py --use_cases all --sim_metric cosine --sem_embs fasttext --fine_tune True --task compute
  python -m experiments.emb_sym_analysis.py --use_cases all --sim_metric cosine --task visualize

Experiment Sec. 6.3 (Fig. 12)

Prerequisites

Download the fasttext embeddings (wiki-news-300d-1M) from here and save them in the data folder.

  python -m experiments.gradient.get_grads.py --use_cases all --grad_text_units words --multi_process True

Run the experiment

  python -m experiments.gradient.gradient_embeddings_comparison.py --use_cases all --grad_text_units words --sim_metric cosine --sem_embs fasttext --task compute
  python -m experiments.gradient.gradient_embeddings_comparison.py --use_cases all --grad_text_units words --sim_metric cosine --sem_embs fasttext --task visualize

Create SBERT-based EM models

Option 1: pre-trained EM model. Only the classification layer is fine-tuned on the EM task.

  python -m utils.bert_em_pretrain --use_cases Structured_Fodors-Zagats --tok sent_pair --bert_model sentence-transformers/nli-bert-base --experiment compute_features
  python -m utils.bert_em_pretrain --use_cases Structured_Fodors-Zagats --tok sent_pair --bert_model sentence-transformers/nli-bert-base --experiment train

Option 2: fine-tuned EM model. Both the SBERT architecture and the classification layer are fine-tuned on the EM task.

  python -m utils.bert_em_fine_tuning --fit True --use_cases Structured_Fodors-Zagats --bert_model sentence-transformers/nli-bert-base --tok sent_pair

The model will be stored in the directory results/models/.

Experiment Sec. 7.1 (Tab. 3)

Pre-trained EM model.

  python -m utils.bert_em_pretrain --use_cases all --tok sent_pair --bert_model sentence-transformers/nli-bert-base --experiment eval
  python -m utils.bert_em_pretrain --use_cases all --tok attr_pair --bert_model sentence-transformers/nli-bert-base --experiment eval

Fine-tuned EM model.

  python -m utils.bert_em_fine_tuning --fit False --use_cases all --tok sent_pair --bert_model sentence-transformers/nli-bert-base
  python -m utils.bert_em_fine_tuning --fit False --use_cases all --tok attr_pair --bert_model sentence-transformers/nli-bert-base

Experiment Sec 7.2 (Tab 4. Fig. 13)

The experiment evaluates the impact of the fine-tuning process on the BERT and SBERT model to learn the existence of attributes between the entity descriptions which match.

  python -m struct_experiments_gmask.py --data_dir Structured_Fodors-Zagats
  python -m struct_experiments_gmask.py --data_dir Structured_Fodors-Zagats --model_name_or_path nli-bert-base

Experiment Sec. 7.3.1 (Fig. 14)

Masking the tokens of BERT, SBERT, Ditto and SupCon models with multiple criteria (e.g, random, maskSyn, or maskSem).

  python -m experiments.masking.word_masking.py --use_cases all --bert_model bert-base-uncased --approach bert --max-len <MAX_LEN> --output_dir <OUTPUT_DIR>
  python -m experiments.masking.word_masking.py --use_cases all --bert_model sentence-transformers/nli-bert-base --approach sbert --max-len <MAX_LEN> --output_dir <OUTPUT_DIR>
  python -m experiments.masking.word_masking.py --use_cases all --bert_model roberta-base --approach ditto --max-len <MAX_LEN> --output_dir <OUTPUT_DIR>
  python -m experiments.masking.word_masking.py --use_cases all --bert_model roberta-base --approach supcon --max-len <MAX_LEN> --output_dir <OUTPUT_DIR>
  python -m experiments.masking.analyze_masking_results.py

Experiment Sec. 7.3.2 (Fig. 15)

Evaluate the correlation between the Jaccard sentence similarity and the cosine similarity between BERT, SBERT, Ditto, SupCon embeddings.

  python -m experiments.sent_sim.model_sent_corr.py --use_cases all --bert_model bert-base-uncased --approach bert --train_type pt --output_dir <OUTPUT_DIR>
  python -m experiments.sent_sim.model_sent_corr.py --use_cases all --bert_model sentence-transformers/nli-bert-base --approach sbert --train_type pt --output_dir <OUTPUT_DIR>
  python -m experiments.sent_sim.model_sent_corr.py --use_cases all --bert_model bert-base-uncased --approach bert --train_type ft --output_dir <OUTPUT_DIR>
  python -m experiments.sent_sim.model_sent_corr.py --use_cases all --bert_model sentence-transformers/nli-bert-base --approach sbert --train_type ft --output_dir <OUTPUT_DIR>
  python -m experiments.sent_sim.model_sent_corr.py --use_cases all --bert_model roberta-base --approach ditto --output_dir <OUTPUT_DIR>
  python -m experiments.sent_sim.model_sent_corr.py --use_cases all --bert_model roberta-base --approach supcon --output_dir <OUTPUT_DIR>
  python -m experiments.sent_sim.load_sent_corr_results.py

Experiment Sec. 8.1 (Fig. 16)

Degradation Test Lerf and Morf.

  python -m utils.exp_degradation --fit False --use_cases Structured_Fodors-Zagats

Experiment Sec. 8.2

Evaluate how many cliques are correctly recognized by an EM model.

  python -m experiments.cliques.cluster_matching_records.py --bert_model bert-base-uncased --approach bert --output_dir <OUTPUT_DIR>

Experiment Sec. 8.3

Evaluate robustness to token injection.

  python -m experiments.robustness.robustness_test.py --use_cases all --repeat 5 --output_dir <OUTPUT_DIR>
  python -m experiments.robustness.load_word_occ_hacking_results.py

Evaluate out-of-distribution effectiveness.

  python -m experiments.robustness.ood_experiment.py --bert_model bert-base-uncased --approach bert --output_dir <OUTPUT_DIR>
  python -m experiments.robustness.ood_experiment.py --bert_model sentence-transformers/nli-bert-base --approach sbert --output_dir <OUTPUT_DIR>
  python -m experiments.robustness.ood_experiment.py --bert_model roberta-base --approach ditto --output_dir <OUTPUT_DIR>
  python -m experiments.robustness.ood_experiment.py --bert_model roberta-base --approach supcon --output_dir <OUTPUT_DIR>
  python -m experiments.robustness.load_ood_results.py

License

MIT License