-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTraffic.py
185 lines (156 loc) · 7.81 KB
/
Traffic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
Traffic.py
"""
__author__ = "[email protected]"
import numpy as np
from os import listdir
from re import split
from OU import OU
from helper import softmax
def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018.html"""
return [int(s) if s.isdigit() else s for s in split(r'(\d+)', string_)]
#
class Traffic():
def __init__(self, nodes_num, type, capacity):
self.nodes_num = nodes_num
self.prev_traffic = None
self.type = type
self.capacity = capacity * nodes_num / (nodes_num - 1)
self.dictionary = {}
self.dictionary['NORM'] = self.normal_traffic
self.dictionary['UNI'] = self.uniform_traffic
self.dictionary['CONTROLLED'] = self.controlled_uniform_traffic
self.dictionary['EXP'] = self.exp_traffic
self.dictionary['OU'] = self.ou_traffic
self.dictionary['STAT'] = self.stat_traffic
self.dictionary['STATEQ'] = self.stat_eq_traffic
self.dictionary['FILE'] = self.file_traffic
self.dictionary['DIR'] = self.dir_traffic
if self.type.startswith('DIR:'):
self.dir = sorted(listdir(self.type.split('DIR:')[-1]), key=lambda x: natural_key((x)))
self.static = None
self.total_ou = OU(1, self.capacity/2, 0.1, self.capacity/2)
self.nodes_ou = OU(self.nodes_num**2, 1, 0.1, 1)
def normal_traffic(self):
t = np.random.normal(capacity/2, capacity/2)
return np.asarray(t * softmax(np.random.randn(self.nodes_num, self.nodes_num))).clip(min=0.001)
def uniform_traffic(self):
t = np.random.uniform(0, self.capacity*1.25)
return np.asarray(t * softmax(np.random.uniform(0, 1, size=[self.nodes_num]*2))).clip(min=0.001)
def controlled_uniform_traffic(self):
t = np.random.uniform(0, self.capacity*1.25)
if self.prev_traffic is None:
self.prev_traffic = np.asarray(t * softmax(np.random.uniform(0, 1, size=[self.nodes_num]*2))).clip(min=0.001)
dist = [1]
dist += [0]*(self.nodes_num**2 - 1)
ch = np.random.choice(dist, [self.nodes_num]*2)
tt = np.multiply(self.prev_traffic, 1 - ch)
nt = np.asarray(t * softmax(np.random.uniform(0, 1, size=[self.nodes_num]*2))).clip(min=0.001)
nt = np.multiply(nt, ch)
self.prev_traffic = tt + nt
return self.prev_traffic
# xxxxxxx
# xxx
# 指数分布
def exp_traffic(self):
a = np.random.exponential(size=self.nodes_num)
b = np.random.exponential(size=self.nodes_num)
# https://blog.csdn.net/u011599639/article/details/77926402
# 计算向量 a,b 外积,[a,b]
T = np.outer(a, b)
# 对角线 填 -1
np.fill_diagonal(T, -1)
T[T!=-1] = np.asarray(np.random.exponential()*T[T!=-1]/np.average(T[T!=-1])).clip(min=0.001)
return T
def stat_traffic(self):
if self.static is None:
string = self.type.split('STAT:')[-1]
v = np.asarray(tuple(float(x) for x in string.split(',')[:self.nodes_num**2]))
M = np.split(v, self.nodes_num)
self.static = np.vstack(M)
return self.static
def stat_eq_traffic(self):
if self.static is None:
value = float(self.type.split('STATEQ:')[-1])
self.static = np.full([self.nodes_num]*2, value, dtype=float)
return self.static
def ou_traffic(self):
t = self.total_ou.evolve()[0]
nt = t * softmax(self.nodes_ou.evolve())
i = np.split(nt, self.nodes_num)
return np.vstack(i).clip(min=0.001)
def file_traffic(self):
if self.static is None:
fname = 'traffic/' + self.type.split('FILE:')[-1]
v = np.loadtxt(fname, delimiter=',')
self.static = np.split(v, self.nodes_num)
return self.static
def dir_traffic(self):
while len(self.dir) > 0:
tm = self.dir.pop(0)
if not tm.endswith('.txt'):
continue
fname = self.type.split('DIR:')[-1] + '/' + tm
v = np.loadtxt(fname, delimiter=',')
return np.split(v, self.nodes_num)
return False
def generate(self):
return self.dictionary[self.type.split(":")[0]]()
# 这样 dictionary [14,14] 代表什么意思呢???
#[[-1.00000000e+00 4.82597027e-01 1.64885219e-01 2.39937374e-01
# 4.24195039e-01 3.90513477e-01 1.73313504e-01 2.39531467e-01
# 8.81383591e-01 2.35750495e-01 9.86736084e-01 1.10174305e+00
# 2.91715890e-02 1.24369249e-01]
# [1.24568554e-01 - 1.00000000e+00 4.58794226e-02 6.67627350e-02
# 1.18032554e-01 1.08660636e-01 4.82245987e-02 6.66497910e-02
# 2.45245574e-01 6.55977330e-02 2.74559976e-01 3.06560741e-01
# 8.11701418e-03 3.46058268e-02]
# [4.41894837e-01 4.76355699e-01 - 1.00000000e+00 2.36834313e-01
# 4.18709012e-01 3.85463046e-01 1.71072076e-01 2.36433655e-01
# 8.69984838e-01 2.32701582e-01 9.73974829e-01 1.08749443e+00
# 2.87943189e-02 1.22760807e-01]
# [3.99306289e-01 4.30445913e-01 1.47067148e-01 - 1.00000000e+00
# 3.78355046e-01 3.48313231e-01 1.54584644e-01 2.13646863e-01
# 7.86138212e-01 2.10274476e-01 8.80105948e-01 9.82684859e-01
# 2.60192056e-02 1.10929475e-01]
# [8.86430104e-01 9.55557740e-01 3.26478072e-01 4.75083769e-01
# - 1.00000000e+00 7.73229329e-01 3.43166350e-01 4.74280060e-01
# 1.74516805e+00 4.66793613e-01 1.95376940e+00 2.18148691e+00
# 5.77606908e-02 2.46255140e-01]
# [6.17537874e-01 6.65696136e-01 2.27443285e-01 3.30970507e-01
# 5.85136215e-01 - 1.00000000e+00 2.39069293e-01 3.30410597e-01
# 1.21578381e+00 3.25195110e-01 1.36110743e+00 1.51974846e+00
# 4.02393985e-02 1.71555405e-01]
# [2.31567998e-01 2.49626667e-01 8.52880256e-02 1.24109275e-01
# 2.19417832e-01 2.01995810e-01 - 1.00000000e+00 1.23899316e-01
# 4.55901789e-01 1.21943582e-01 5.10396098e-01 5.69884250e-01
# 1.50892072e-02 6.43308585e-02]
# [1.68174721e+00 1.81289710e+00 6.19398623e-01 9.01335366e-01
# 1.59350744e+00 1.46698116e+00 6.51059851e-01 - 1.00000000e+00
# 3.31095647e+00 8.85607170e-01 3.70671778e+00 4.13874653e+00
# 1.09584366e-01 4.67198589e-01]
# [1.81548791e+00 1.95706747e+00 6.68656207e-01 9.73013928e-01
# 1.72023088e+00 1.58364262e+00 7.02835289e-01 9.71367859e-01
# - 1.00000000e+00 9.56034948e-01 4.00149396e+00 4.46787974e+00
# 1.18299046e-01 5.04352487e-01]
# [3.39180759e+00 3.65631535e+00 1.24922518e+00 1.81784523e+00
# 3.21384249e+00 2.95865979e+00 1.31308067e+00 1.81476994e+00
# 6.67765480e+00 - 1.00000000e+00 7.47584027e+00 8.34717123e+00
# 2.21013647e-01 9.42262733e-01]
# [3.80108803e+00 4.09751324e+00 1.39996587e+00 2.03719980e+00
# 3.60164835e+00 3.31567343e+00 1.47152663e+00 2.03375342e+00
# 7.48342971e+00 2.00165090e+00 - 1.00000000e+00 9.35440226e+00
# 2.47682778e-01 1.05596308e+00]
# [1.92350407e-01 2.07350720e-01 7.08439274e-02 1.03090538e-01
# 1.82257953e-01 1.67786468e-01 7.44651911e-02 1.02916137e-01
# 3.78691769e-01 1.01291620e-01 4.23957102e-01 - 1.00000000e+00
# 1.25337489e-02 5.34359969e-02]
# [3.30800641e-01 3.56597899e-01 1.21836065e-01 1.77293184e-01
# 3.13443828e-01 2.88556037e-01 1.28063846e-01 1.76993253e-01
# 6.51267039e-01 1.74199439e-01 7.29113514e-01 8.14093818e-01
# - 1.00000000e+00 9.18982306e-02]
# [6.67661381e-01 7.19728489e-01 2.45904104e-01 3.57834288e-01
# 6.32629787e-01 5.82398272e-01 2.58473757e-01 3.57228932e-01
# 1.31446496e+00 3.51590122e-01 1.47158401e+00 1.64310142e+00
# 4.35054974e-02 - 1.00000000e+00]]