forked from linux-can/can-utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
can-calc-bit-timing.c
909 lines (790 loc) · 22 KB
/
can-calc-bit-timing.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
/* SPDX-License-Identifier: GPL-2.0-only */
/* can-calc-bit-timing.c: Calculate CAN bit timing parameters
*
* Copyright (C) 2008 Wolfgang Grandegger <[email protected]>
* Copyright (C) 2016, 2021 Marc Kleine-Budde <[email protected]>
*
* Derived from:
* can_baud.c - CAN baudrate calculation
* Code based on LinCAN sources and H8S2638 project
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
* Copyright 2005 Stanislav Marek
* email:[email protected]
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*/
#include <errno.h>
#include <getopt.h>
#include <libgen.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/can/netlink.h>
#include <linux/types.h>
enum {
OPT_TQ = UCHAR_MAX + 1,
OPT_PROP_SEG,
OPT_PHASE_SEG1,
OPT_PHASE_SEG2,
OPT_SJW,
OPT_BRP,
OPT_TSEG1,
OPT_TSEG2,
};
/* imported from kernel */
/**
* abs - return absolute value of an argument
* @x: the value. If it is unsigned type, it is converted to signed type first.
* char is treated as if it was signed (regardless of whether it really is)
* but the macro's return type is preserved as char.
*
* Return: an absolute value of x.
*/
#define abs(x) __abs_choose_expr(x, long long, \
__abs_choose_expr(x, long, \
__abs_choose_expr(x, int, \
__abs_choose_expr(x, short, \
__abs_choose_expr(x, char, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), char), \
(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
((void)0)))))))
#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), signed type) || \
__builtin_types_compatible_p(typeof(x), unsigned type), \
({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
/*
* min()/max()/clamp() macros that also do
* strict type-checking.. See the
* "unnecessary" pointer comparison.
*/
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
#define max(x, y) ({ \
typeof(x) _max1 = (x); \
typeof(y) _max2 = (y); \
(void) (&_max1 == &_max2); \
_max1 > _max2 ? _max1 : _max2; })
/**
* clamp - return a value clamped to a given range with strict typechecking
* @val: current value
* @lo: lowest allowable value
* @hi: highest allowable value
*
* This macro does strict typechecking of lo/hi to make sure they are of the
* same type as val. See the unnecessary pointer comparisons.
*/
#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
# define do_div(n,base) ({ \
uint32_t __base = (base); \
uint32_t __rem; \
__rem = ((uint64_t)(n)) % __base; \
(n) = ((uint64_t)(n)) / __base; \
__rem; \
})
/* */
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
/* we don't want to see these prints */
#define netdev_err(dev, format, arg...) do { } while (0)
#define netdev_warn(dev, format, arg...) do { } while (0)
/* define in-kernel-types */
typedef __u64 u64;
typedef __u32 u32;
struct calc_ref_clk {
__u32 clk; /* CAN system clock frequency in Hz */
char *name;
};
struct calc_bittiming_const {
struct can_bittiming_const bittiming_const;
const struct calc_ref_clk ref_clk[16];
void (*printf_btr)(struct can_bittiming *bt, bool hdr);
};
/*
* minimal structs, just enough to be source level compatible
*/
struct can_priv {
struct can_clock clock;
};
struct net_device {
struct can_priv priv;
};
static inline void *netdev_priv(const struct net_device *dev)
{
return (void *)&dev->priv;
}
static void print_usage(char *cmd)
{
printf("%s - calculate CAN bit timing parameters.\n", cmd);
printf("Usage: %s [options] [<CAN-contoller-name>]\n"
"Options:\n"
"\t-q don't print header line\n"
"\t-l list all support CAN controller names\n"
"\t-b <bitrate> bit-rate in bits/sec\n"
"\t-s <samp_pt> sample-point in one-tenth of a percent\n"
"\t or 0 for CIA recommended sample points\n"
"\t-c <clock> real CAN system clock in Hz\n"
"\n"
"Or supply low level bit timing parameters to decode them:\n"
"\n"
"\t--prop-seg Propagation segment in TQs\n"
"\t--phase-seg1 Phase buffer segment 1 in TQs\n"
"\t--phase-seg2 Phase buffer segment 2 in TQs\n"
"\t--sjw Synchronisation jump width in TQs\n"
"\t--brp Bit-rate prescaler\n"
"\t--tseg1 Time segment 1 = prop-seg + phase-seg1\n"
"\t--tseg2 Time segment 2 = phase_seg2\n",
cmd);
}
static void printf_btr_sja1000(struct can_bittiming *bt, bool hdr)
{
uint8_t btr0, btr1;
if (hdr) {
printf("BTR0 BTR1");
} else {
btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
(((bt->phase_seg2 - 1) & 0x7) << 4);
printf("0x%02x 0x%02x", btr0, btr1);
}
}
static void printf_btr_at91(struct can_bittiming *bt, bool hdr)
{
if (hdr) {
printf("%10s", "CAN_BR");
} else {
uint32_t br = ((bt->phase_seg2 - 1) |
((bt->phase_seg1 - 1) << 4) |
((bt->prop_seg - 1) << 8) |
((bt->sjw - 1) << 12) |
((bt->brp - 1) << 16));
printf("0x%08x", br);
}
}
static void printf_btr_flexcan(struct can_bittiming *bt, bool hdr)
{
if (hdr) {
printf("%10s", "CAN_CTRL");
} else {
uint32_t ctrl = (((bt->brp - 1) << 24) |
((bt->sjw - 1) << 22) |
((bt->phase_seg1 - 1) << 19) |
((bt->phase_seg2 - 1) << 16) |
((bt->prop_seg - 1) << 0));
printf("0x%08x", ctrl);
}
}
static void printf_btr_mcp251x(struct can_bittiming *bt, bool hdr)
{
uint8_t cnf1, cnf2, cnf3;
if (hdr) {
printf("CNF1 CNF2 CNF3");
} else {
cnf1 = ((bt->sjw - 1) << 6) | (bt->brp - 1);
cnf2 = 0x80 | ((bt->phase_seg1 - 1) << 3) | (bt->prop_seg - 1);
cnf3 = bt->phase_seg2 - 1;
printf("0x%02x 0x%02x 0x%02x", cnf1, cnf2, cnf3);
}
}
static void printf_btr_mcp251xfd(struct can_bittiming *bt, bool hdr)
{
if (hdr) {
printf("NBTCFG");
} else {
uint32_t nbtcfg = ((bt->brp - 1) << 24) |
((bt->prop_seg + bt->phase_seg1 - 1) << 16) |
((bt->phase_seg2 - 1) << 8) |
(bt->sjw - 1);
printf("0x%08x", nbtcfg);
}
}
static void printf_btr_ti_hecc(struct can_bittiming *bt, bool hdr)
{
if (hdr) {
printf("%10s", "CANBTC");
} else {
uint32_t can_btc;
can_btc = (bt->phase_seg2 - 1) & 0x7;
can_btc |= ((bt->phase_seg1 + bt->prop_seg - 1)
& 0xF) << 3;
can_btc |= ((bt->sjw - 1) & 0x3) << 8;
can_btc |= ((bt->brp - 1) & 0xFF) << 16;
printf("0x%08x", can_btc);
}
}
#define RCAR_CAN_BCR_TSEG1(x) (((x) & 0x0f) << 20)
#define RCAR_CAN_BCR_BPR(x) (((x) & 0x3ff) << 8)
#define RCAR_CAN_BCR_SJW(x) (((x) & 0x3) << 4)
#define RCAR_CAN_BCR_TSEG2(x) ((x) & 0x07)
static void printf_btr_rcar_can(struct can_bittiming *bt, bool hdr)
{
if (hdr) {
printf("%10s", "CiBCR");
} else {
uint32_t bcr;
bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
RCAR_CAN_BCR_BPR(bt->brp - 1) |
RCAR_CAN_BCR_SJW(bt->sjw - 1) |
RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
printf("0x%08x", bcr << 8);
}
}
static struct calc_bittiming_const can_calc_consts[] = {
{
.bittiming_const = {
.name = "sja1000",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 8000000, },
},
.printf_btr = printf_btr_sja1000,
}, {
.bittiming_const = {
.name = "mscan",
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 32000000, },
{ .clk = 33000000, },
{ .clk = 33300000, },
{ .clk = 33333333, },
{ .clk = 66660000, .name = "mpc5121", },
{ .clk = 66666666, .name = "mpc5121" },
},
}, {
.bittiming_const = {
.name = "at91",
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 2,
.brp_max = 128,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 99532800, .name = "ronetix PM9263", },
{ .clk = 100000000, },
},
.printf_btr = printf_btr_at91,
}, {
.bittiming_const = {
.name = "flexcan",
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 24000000, .name = "mx28" },
{ .clk = 30000000, .name = "mx6" },
{ .clk = 49875000, },
{ .clk = 66000000, },
{ .clk = 66500000, },
{ .clk = 66666666, },
{ .clk = 83368421, .name = "vybrid" },
},
.printf_btr = printf_btr_flexcan,
}, {
.bittiming_const = {
.name = "mcp251x",
.tseg1_min = 3,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
},
.ref_clk = {
/* The mcp251x uses half of the external OSC clock as the base clock */
{ .clk = 8000000 / 2, .name = "8 MHz OSC" },
{ .clk = 16000000 / 2, .name = "16 MHz OSC" },
{ .clk = 20000000 / 2, .name = "20 MHz OSC" },
},
.printf_btr = printf_btr_mcp251x,
}, {
.bittiming_const = {
.name = "mcp251xfd",
.tseg1_min = 2,
.tseg1_max = 256,
.tseg2_min = 1,
.tseg2_max = 128,
.sjw_max = 128,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 20000000, },
{ .clk = 40000000, },
},
.printf_btr = printf_btr_mcp251xfd,
}, {
.bittiming_const = {
.name = "ti_hecc",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 13000000, },
},
.printf_btr = printf_btr_ti_hecc,
}, {
.bittiming_const = {
.name = "rcar_can",
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
},
.ref_clk = {
{ .clk = 65000000, },
},
.printf_btr = printf_btr_rcar_can,
},
};
static long common_bitrates[] = {
1000000,
800000,
500000,
250000,
125000,
100000,
50000,
20000,
10000,
};
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
#define CAN_CALC_SYNC_SEG 1
/*
* Bit-timing calculation derived from:
*
* Code based on LinCAN sources and H8S2638 project
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
* Copyright 2005 Stanislav Marek
* email: [email protected]
*
* Calculates proper bit-timing parameters for a specified bit-rate
* and sample-point, which can then be used to set the bit-timing
* registers of the CAN controller. You can find more information
* in the header file linux/can/netlink.h.
*/
static int can_update_spt(const struct can_bittiming_const *btc,
unsigned int spt_nominal, unsigned int tseg,
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
unsigned int *spt_error_ptr)
{
unsigned int spt_error, best_spt_error = UINT_MAX;
unsigned int spt, best_spt = 0;
unsigned int tseg1, tseg2;
int i;
for (i = 0; i <= 1; i++) {
tseg2 = tseg + CAN_CALC_SYNC_SEG - (spt_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
tseg1 = tseg - tseg2;
if (tseg1 > btc->tseg1_max) {
tseg1 = btc->tseg1_max;
tseg2 = tseg - tseg1;
}
spt = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
spt_error = abs(spt_nominal - spt);
if ((spt <= spt_nominal) && (spt_error < best_spt_error)) {
best_spt = spt;
best_spt_error = spt_error;
*tseg1_ptr = tseg1;
*tseg2_ptr = tseg2;
}
}
if (spt_error_ptr)
*spt_error_ptr = best_spt_error;
return best_spt;
}
static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
const struct can_bittiming_const *btc)
{
struct can_priv *priv = netdev_priv(dev);
unsigned int rate; /* current bitrate */
unsigned int rate_error; /* difference between current and nominal value */
unsigned int best_rate_error = UINT_MAX;
unsigned int spt_error; /* difference between current and nominal value */
unsigned int best_spt_error = UINT_MAX;
unsigned int spt_nominal; /* nominal sample point */
unsigned int best_tseg = 0; /* current best value for tseg */
unsigned int best_brp = 0; /* current best value for brp */
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
u64 v64;
/* Use CiA recommended sample points */
if (bt->sample_point) {
spt_nominal = bt->sample_point;
} else {
if (bt->bitrate > 800000)
spt_nominal = 750;
else if (bt->bitrate > 500000)
spt_nominal = 800;
else
spt_nominal = 875;
}
/* tseg even = round down, odd = round up */
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
/* choose brp step which is possible in system */
brp = (brp / btc->brp_inc) * btc->brp_inc;
if ((brp < btc->brp_min) || (brp > btc->brp_max))
continue;
rate = priv->clock.freq / (brp * tsegall);
rate_error = abs(bt->bitrate - rate);
/* tseg brp biterror */
if (rate_error > best_rate_error)
continue;
/* reset sample point error if we have a better bitrate */
if (rate_error < best_rate_error)
best_spt_error = UINT_MAX;
can_update_spt(btc, spt_nominal, tseg / 2, &tseg1, &tseg2, &spt_error);
if (spt_error > best_spt_error)
continue;
best_spt_error = spt_error;
best_rate_error = rate_error;
best_tseg = tseg / 2;
best_brp = brp;
if (rate_error == 0 && spt_error == 0)
break;
}
if (best_rate_error) {
/* Error in one-tenth of a percent */
rate_error = (best_rate_error * 1000) / bt->bitrate;
if (rate_error > CAN_CALC_MAX_ERROR) {
netdev_err(dev,
"bitrate error %ld.%ld%% too high\n",
rate_error / 10, rate_error % 10);
return -EDOM;
}
netdev_warn(dev, "bitrate error %ld.%ld%%\n",
rate_error / 10, rate_error % 10);
}
/* real sample point */
bt->sample_point = can_update_spt(btc, spt_nominal, best_tseg,
&tseg1, &tseg2, NULL);
v64 = (u64)best_brp * 1000 * 1000 * 1000;
do_div(v64, priv->clock.freq);
bt->tq = (u32)v64;
bt->prop_seg = tseg1 / 2;
bt->phase_seg1 = tseg1 - bt->prop_seg;
bt->phase_seg2 = tseg2;
/* check for sjw user settings */
if (!bt->sjw || !btc->sjw_max) {
bt->sjw = 1;
} else {
/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
if (bt->sjw > btc->sjw_max)
bt->sjw = btc->sjw_max;
/* bt->sjw must not be higher than tseg2 */
if (tseg2 < bt->sjw)
bt->sjw = tseg2;
}
bt->brp = best_brp;
/* real bit-rate */
bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
return 0;
}
static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
const struct can_bittiming_const *btc)
{
struct can_priv *priv = netdev_priv(dev);
int tseg1, alltseg;
u64 brp64, v64;
tseg1 = bt->prop_seg + bt->phase_seg1;
if (!bt->sjw)
bt->sjw = 1;
if (bt->sjw > btc->sjw_max ||
tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
return -ERANGE;
if (!bt->brp) {
brp64 = (u64)priv->clock.freq * (u64)bt->tq;
if (btc->brp_inc > 1)
do_div(brp64, btc->brp_inc);
brp64 += 500000000UL - 1;
do_div(brp64, 1000000000UL); /* the practicable BRP */
if (btc->brp_inc > 1)
brp64 *= btc->brp_inc;
bt->brp = brp64;
}
v64 = bt->brp * 1000 * 1000 * 1000;
do_div(v64, priv->clock.freq);
bt->tq = v64;
if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
return -EINVAL;
alltseg = CAN_CALC_SYNC_SEG + bt->prop_seg + bt->phase_seg1 + bt->phase_seg2;
bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
bt->sample_point = ((CAN_CALC_SYNC_SEG + tseg1) * 1000) / alltseg;
return 0;
}
static __u32 get_cia_sample_point(__u32 bitrate)
{
__u32 sampl_pt;
if (bitrate > 800000)
sampl_pt = 750;
else if (bitrate > 500000)
sampl_pt = 800;
else
sampl_pt = 875;
return sampl_pt;
}
static void print_bit_timing(const struct calc_bittiming_const *btc,
const struct can_bittiming *ref_bt,
const struct calc_ref_clk *ref_clk,
unsigned int bitrate_nominal,
unsigned int spt_nominal,
bool quiet)
{
struct net_device dev = {
.priv.clock.freq = ref_clk->clk,
};
struct can_bittiming bt = {
.bitrate = bitrate_nominal,
.sample_point = spt_nominal,
};
long rate_error, spt_error;
if (!quiet) {
printf("Bit timing parameters for %s%s%s%s with %.6f MHz ref clock\n"
"nominal real Bitrt nom real SampP\n"
"Bitrate TQ[ns] PrS PhS1 PhS2 SJW BRP Bitrate Error SampP SampP Error ",
btc->bittiming_const.name,
ref_clk->name ? " (" : "",
ref_clk->name ? ref_clk->name : "",
ref_clk->name ? ")" : "",
ref_clk->clk / 1000000.0);
if (btc->printf_btr)
btc->printf_btr(&bt, true);
printf("\n");
}
if (ref_bt) {
bt = *ref_bt;
if (can_fixup_bittiming(&dev, &bt, &btc->bittiming_const)) {
printf("%7d ***parameters exceed controller's range***\n", bitrate_nominal);
return;
}
} else {
if (can_calc_bittiming(&dev, &bt, &btc->bittiming_const)) {
printf("%7d ***bitrate not possible***\n", bitrate_nominal);
return;
}
}
/* get nominal sample point */
if (!spt_nominal)
spt_nominal = get_cia_sample_point(bitrate_nominal);
rate_error = abs(bitrate_nominal - bt.bitrate);
spt_error = abs(spt_nominal - bt.sample_point);
printf("%7d " /* Bitrate */
"%6d %3d %4d %4d " /* TQ[ns], PrS, PhS1, PhS2 */
"%3d %3d " /* SJW, BRP */
"%7d ", /* real Bitrate */
bitrate_nominal,
bt.tq, bt.prop_seg, bt.phase_seg1, bt.phase_seg2,
bt.sjw, bt.brp,
bt.bitrate);
if (100.0 * rate_error / bitrate_nominal > 99.9)
printf("≥100%% ");
else
printf("%4.1f%% ",
100.0 * rate_error / bitrate_nominal);
printf("%4.1f%% %4.1f%% ", /* nom SampP, real SampP */
spt_nominal / 10.0,
bt.sample_point / 10.0);
if (100.0 * spt_error / spt_nominal > 99.9)
printf("≥100%% ");
else
printf("%4.1f%% ", /* SampP Error */
100.0 * spt_error / spt_nominal);
if (btc->printf_btr)
btc->printf_btr(&bt, false);
printf("\n");
}
static void do_list(void)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(can_calc_consts); i++)
printf("%s\n", can_calc_consts[i].bittiming_const.name);
}
static void do_calc(const char *name,
const struct can_bittiming *opt_ref_bt,
__u32 bitrate_nominal, unsigned int spt_nominal,
struct calc_ref_clk *opt_ref_clk, bool quiet)
{
const struct calc_bittiming_const *btc;
const struct calc_ref_clk *ref_clk;
unsigned int i, j, k;
bool found = false;
for (i = 0; i < ARRAY_SIZE(can_calc_consts); i++) {
if (name &&
strcmp(can_calc_consts[i].bittiming_const.name, name) != 0)
continue;
found = true;
btc = &can_calc_consts[i];
for (j = 0; j < ARRAY_SIZE(btc->ref_clk); j++) {
if (opt_ref_clk)
ref_clk = opt_ref_clk;
else
ref_clk = &btc->ref_clk[j];
if (!ref_clk->clk)
break;
if (bitrate_nominal) {
print_bit_timing(btc, opt_ref_bt, ref_clk, bitrate_nominal,
spt_nominal, quiet);
} else {
for (k = 0; k < ARRAY_SIZE(common_bitrates); k++)
print_bit_timing(btc, opt_ref_bt, ref_clk,
common_bitrates[k],
spt_nominal, k);
}
printf("\n");
if (opt_ref_clk)
break;
}
}
if (!found) {
printf("error: unknown CAN controller '%s', try one of these:\n\n", name);
do_list();
exit(EXIT_FAILURE);
}
}
int main(int argc, char *argv[])
{
__u32 bitrate_nominal = 0;
unsigned int spt_nominal = 0;
struct calc_ref_clk opt_ref_clk = {
.name = "cmd-line",
};
struct can_bittiming bt = { 0 };
bool quiet = false, list = false;
const char *name = NULL;
int opt;
const struct option long_options[] = {
{ "tq", required_argument, 0, OPT_TQ, },
{ "prop-seg", required_argument, 0, OPT_PROP_SEG, },
{ "phase-seg1", required_argument, 0, OPT_PHASE_SEG1, },
{ "phase-seg2", required_argument, 0, OPT_PHASE_SEG2, },
{ "sjw", required_argument, 0, OPT_SJW, },
{ "brp", required_argument, 0, OPT_BRP, },
{ "tseg1", required_argument, 0, OPT_TSEG1, },
{ "tseg2", required_argument, 0, OPT_TSEG2, },
{ 0, 0, 0, 0 },
};
while ((opt = getopt_long(argc, argv, "b:c:lqs:?", long_options, NULL)) != -1) {
switch (opt) {
case 'b':
bitrate_nominal = atoi(optarg);
break;
case 'c':
opt_ref_clk.clk = strtoul(optarg, NULL, 10);
break;
case 'l':
list = true;
break;
case 'q':
quiet = true;
break;
case 's':
spt_nominal = strtoul(optarg, NULL, 10);
break;
case '?':
print_usage(basename(argv[0]));
exit(EXIT_SUCCESS);
break;
case OPT_TQ:
bt.tq = strtoul(optarg, NULL, 10);
break;
case OPT_PROP_SEG:
bt.prop_seg = strtoul(optarg, NULL, 10);
break;
case OPT_PHASE_SEG1:
bt.phase_seg1 = strtoul(optarg, NULL, 10);
break;
case OPT_PHASE_SEG2:
bt.phase_seg2 = strtoul(optarg, NULL, 10);
break;
case OPT_SJW:
bt.sjw = strtoul(optarg, NULL, 10);
break;
case OPT_BRP:
bt.brp = strtoul(optarg, NULL, 10);
break;
case OPT_TSEG1: {
__u32 tseg1;
tseg1 = strtoul(optarg, NULL, 10);
bt.prop_seg = tseg1 / 2;
bt.phase_seg1 = tseg1 - bt.prop_seg;
break;
}
case OPT_TSEG2:
bt.phase_seg2 = strtoul(optarg, NULL, 10);
break;
default:
print_usage(basename(argv[0]));
exit(EXIT_FAILURE);
break;
}
}
if (argc > optind + 1) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
if (argc == optind + 1)
name = argv[optind];
if (list) {
do_list();
exit(EXIT_SUCCESS);
}
if (spt_nominal && (spt_nominal >= 1000 || spt_nominal < 100)) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
do_calc(name,
bt.prop_seg ? &bt: NULL,
bitrate_nominal, spt_nominal,
opt_ref_clk.clk ? &opt_ref_clk : NULL,
quiet);
exit(EXIT_SUCCESS);
}