-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptim.py
88 lines (76 loc) · 2.65 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torch.optim as optim
def get_optimizer(config, model):
param_biases = [p for p in model.parameters() if p.ndim == 1]
param_weights = [p for p in model.parameters() if p.ndim != 1]
parameters = [
{"params": param_weights, "lr": config.lr_weights},
{"params": param_biases, "lr": config.lr_biases},
]
if config.optimizer.upper() == "LARS":
optimizer = LARS(
parameters,
lr=0,
weight_decay=config.weight_decay,
weight_decay_filter=True,
lars_adaptation_filter=True,
)
elif config.optimizer.upper() == "SGD":
optimizer = optim.SGD(
parameters,
lr=config.lr_weights,
momentum=config.momentum,
weight_decay=config.weight_decay,
)
else:
raise ValueError(f"Unknown optimizer {config.optimizer}")
return optimizer
class LARS(optim.Optimizer):
def __init__(
self,
params,
lr,
weight_decay=0,
momentum=0.9,
eta=0.001,
weight_decay_filter=False,
lars_adaptation_filter=False,
):
defaults = dict(
lr=lr,
weight_decay=weight_decay,
momentum=momentum,
eta=eta,
weight_decay_filter=weight_decay_filter,
lars_adaptation_filter=lars_adaptation_filter,
)
super().__init__(params, defaults)
def exclude_bias_and_norm(self, p):
return p.ndim == 1
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g["params"]:
dp = p.grad
if dp is None:
continue
if not g["weight_decay_filter"] or not self.exclude_bias_and_norm(p):
dp = dp.add(p, alpha=g["weight_decay"])
if not g["lars_adaptation_filter"] or not self.exclude_bias_and_norm(p):
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(
param_norm > 0.0,
torch.where(
update_norm > 0, (g["eta"] * param_norm / update_norm), one
),
one,
)
dp = dp.mul(q)
param_state = self.state[p]
if "mu" not in param_state:
param_state["mu"] = torch.zeros_like(p)
mu = param_state["mu"]
mu.mul_(g["momentum"]).add_(dp)
p.add_(mu, alpha=-g["lr"])