-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPartialRefTemplatesTrans.tex
226 lines (200 loc) · 21.8 KB
/
PartialRefTemplatesTrans.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
% The following substitutions are from the file:
% /home/augusto/Desktop/PVS/pvs-tex.sub
\def\munderscoretimestwofn#1#2{{#1 \times #2}}% How to print function m_times with arity (2)
\def\fmunderscoretimestwofn#1#2{{#1 \times #2}}% How to print function fm_times with arity (2)
\def\sigmaunderscoretimestwofn#1#2{{#1 \times #2}}% How to print function sigma_times with arity (2)
\def\generatedunderscoresubsetunderscorealgebraonefn#1{{{\cal A}(#1)}}% How to print function generated_subset_algebra with arity (1)
\def\generatedunderscoresigmaunderscorealgebraonefn#1{{{\cal S}(#1)}}% How to print function generated_sigma_algebra with arity (1)
\def\aeunderscoredecreasingotheronefn#1{{\pvsid{decreasing?}(#1)~\mbox{\it a.e.}}}% How to print function ae_decreasing? with arity (1)
\def\aeunderscoreincreasingotheronefn#1{{\pvsid{increasing?}(#1)~\mbox{\it a.e.}}}% How to print function ae_increasing? with arity (1)
\def\aeunderscoreconvergenceothertwofn#1#2{{#1 \longrightarrow #2~\mbox{\it a.e.}}}% How to print function ae_convergence? with arity (2)
\def\aeunderscoreeqothertwofn#1#2{{#1 = #2~\mbox{\it a.e.}}}% How to print function ae_eq? with arity (2)
\def\aeunderscoreleothertwofn#1#2{{#1 \leq #2~\mbox{\it a.e.}}}% How to print function ae_le? with arity (2)
\def\aeunderscoreposotheronefn#1{{#1> 0~\mbox{\it a.e.}}}% How to print function ae_pos? with arity (1)
\def\aeunderscorenonnegotheronefn#1{{#1 \geq 0~\mbox{\it a.e.}}}% How to print function ae_nonneg? with arity (1)
\def\aeunderscorezerootheronefn#1{{#1 = 0~\mbox{\it a.e.}}}% How to print function ae_0? with arity (1)
\def\xunderscorelttwofn#1#2{{#1 < #2}}% How to print function x_lt with arity (2)
\def\xunderscoreletwofn#1#2{{#1 \leq #2}}% How to print function x_le with arity (2)
\def\xunderscoreeqtwofn#1#2{{#1 = #2}}% How to print function x_eq with arity (2)
\def\xunderscoretimestwofn#1#2{{#1 \times #2}}% How to print function x_times with arity (2)
\def\xunderscoreaddtwofn#1#2{{#1 + #2}}% How to print function x_add with arity (2)
\def\xunderscorelimitonefn#1{{\pvsid{limit}(#1)}}% How to print function x_limit with arity (1)
\def\xunderscoresumonefn#1{{\sum #1}}% How to print function x_sum with arity (1)
\def\xunderscoresigmathreefn#1#2#3{{\sum_{#1}^{#2} #3}}% How to print function x_sigma with arity (3)
\def\xunderscoresuponefn#1{{\pvsid{sup}(#1)}}% How to print function x_sup with arity (1)
\def\xunderscoreinfonefn#1{{\pvsid{inf}(#1)}}% How to print function x_inf with arity (1)
\def\pointwiseunderscoreconvergesunderscoredowntoothertwofn#1#2{{#1 \searrow #2}}% How to print function pointwise_converges_downto? with arity (2)
\def\pointwiseunderscoreconvergesunderscoreuptoothertwofn#1#2{{#1 \nearrow #2}}% How to print function pointwise_converges_upto? with arity (2)
\def\pointwiseunderscoreconvergenceothertwofn#1#2{{#1 \longrightarrow #2}}% How to print function pointwise_convergence? with arity (2)
\def\convergesunderscoredowntoothertwofn#1#2{{#1 \searrow #2}}% How to print function converges_downto? with arity (2)
\def\convergesunderscoreuptoothertwofn#1#2{{#1 \nearrow #2}}% How to print function converges_upto? with arity (2)
\def\convergenceothertwofn#1#2{{#1 \longrightarrow #2}}% How to print function convergence? with arity (2)
\def\convergencetwofn#1#2{{#1 \longrightarrow #2}}% How to print function convergence with arity (2)
\def\crossunderscoreproducttwofn#1#2{{#1 \times #2}}% How to print function cross_product with arity (2)
\def\conjugateonefn#1{{\overline{#1}}}% How to print function conjugate with arity (1)
\def\cunderscoredivtwofn#1#2{{#1/#2}}% How to print function c_div with arity (2)
\def\cunderscoremultwofn#1#2{{#1\times#2}}% How to print function c_mul with arity (2)
\def\cunderscoresubtwofn#1#2{{#1-#2}}% How to print function c_sub with arity (2)
\def\cunderscorenegonefn#1{{-#1}}% How to print function c_neg with arity (1)
\def\cunderscoreaddtwofn#1#2{{#1+#2}}% How to print function c_add with arity (2)
\def\Imonefn#1{{\Im(#1)}}% How to print function Im with arity (1)
\def\Reonefn#1{{\Re(#1)}}% How to print function Re with arity (1)
\def\Etwofn#1#2{{\mathbb{E}(#1~|~#2)}}% How to print function E with arity (2)
\def\Eonefn#1{{\mathbb{E}(#1)}}% How to print function E with arity (1)
\def\Ptwofn#1#2{{\mathbb{P}(#1~|~#2)}}% How to print function P with arity (2)
\def\Ponefn#1{{\mathbb{P}(#1)}}% How to print function P with arity (1)
\def\xtwofn#1#2{{#1\times#2}}% How to print function x with arity (2)
\def\asttwofn#1#2{{#1\ast#2}}% How to print function ast with arity (2)
\def\minusonefn#1{{{#1}^{-}}}% How to print function minus with arity (1)
\def\plusonefn#1{{{#1}^{+}}}% How to print function plus with arity (1)
\def\astonefn#1{{{#1}^{\ast}}}% How to print function ast with arity (1)
\def\dottwofn#1#2{{#1\bullet#2}}% How to print function dot with arity (2)
\def\integralthreefn#1#2#3{{\int_{#1}^{#2} #3}}% How to print function integral with arity (3)
\def\integraltwofn#1#2{{\int_{#1} #2}}% How to print function integral with arity (2)
\def\integralonefn#1{{\int#1}}% How to print function integral with arity (1)
\def\normonefn#1{{\left||{#1}\right||}}% How to print function norm with arity (1)
\def\phionefn#1{{\pvssubscript{\phi}{#1}}}% How to print function phi with arity (1)
\def\infunderscoreclosedonefn#1{{\left(-\infty,~#1\right]}}% How to print function inf_closed with arity (1)
\def\closedunderscoreinfonefn#1{{\left[#1,~\infty\right)}}% How to print function closed_inf with arity (1)
\def\infunderscoreopenonefn#1{(-\infty,~#1)}% How to print function inf_open with arity (1)
\def\openunderscoreinfonefn#1{(#1,~\infty)}% How to print function open_inf with arity (1)
\def\closedtwofn#1#2{{\left[#1,~#2\right]}}% How to print function closed with arity (2)
\def\opentwofn#1#2{(#1,~#2)}% How to print function open with arity (2)
\def\sigmathreefn#1#2#3{{\sum_{#1}^{#2} #3}}% How to print function sigma with arity (3)
\def\sigmatwofn#1#2{{\sum_{#1} {#2}}}% How to print function sigma with arity (2)
\def\ceilingonefn#1{{\lceil{#1}\rceil}}% How to print function ceiling with arity (1)
\def\flooronefn#1{{\lfloor{#1}\rfloor}}% How to print function floor with arity (1)
\def\absonefn#1{{\left|{#1}\right|}}% How to print function abs with arity (1)
\def\roottwofn#1#2{{\sqrt[#2]{#1}}}% How to print function root with arity (2)
\def\sqrtonefn#1{{\sqrt{#1}}}% How to print function sqrt with arity (1)
\def\sqonefn#1{{\pvssuperscript{#1}{2}}}% How to print function sq with arity (1)
\def\expttwofn#1#2{{\pvssuperscript{#1}{#2}}}% How to print function expt with arity (2)
\def\opcarettwofn#1#2{{\pvssuperscript{#1}{#2}}}% How to print function ^ with arity (2)
\def\indexedunderscoresetsotherIIntersectiononefn#1{{\bigcap #1}}% How to print function indexed_sets.IIntersection with arity (1)
\def\indexedunderscoresetsotherIUniononefn#1{{\bigcup #1}}% How to print function indexed_sets.IUnion with arity (1)
\def\setsotherIntersectiononefn#1{{\bigcap #1}}% How to print function sets.Intersection with arity (1)
\def\setsotherUniononefn#1{{\bigcup #1}}% How to print function sets.Union with arity (1)
\def\setsotherremovetwofn#1#2{{(#2 \setminus \{#1\})}}% How to print function sets.remove with arity (2)
\def\setsotheraddtwofn#1#2{{(#2 \cup \{#1\})}}% How to print function sets.add with arity (2)
\def\setsotherdifferencetwofn#1#2{{(#1 \setminus #2)}}% How to print function sets.difference with arity (2)
\def\setsothercomplementonefn#1{{\overline{#1}}}% How to print function sets.complement with arity (1)
\def\setsotherintersectiontwofn#1#2{{(#1 \cap #2)}}% How to print function sets.intersection with arity (2)
\def\setsotheruniontwofn#1#2{{(#1 \cup #2)}}% How to print function sets.union with arity (2)
\def\setsotherstrictunderscoresubsetothertwofn#1#2{{(#1 \subset #2)}}% How to print function sets.strict_subset? with arity (2)
\def\setsothersubsetothertwofn#1#2{{(#1 \subseteq #2)}}% How to print function sets.subset? with arity (2)
\def\setsothermembertwofn#1#2{{(#1 \in #2)}}% How to print function sets.member with arity (2)
\def\opohtwofn#1#2{{#1\circ#2}}% How to print function O with arity (2)
\def\opdividetwofn#1#2{{\frac{#1}{#2}}}% How to print function / with arity (2)
\def\optimestwofn#1#2{{#1\times#2}}% How to print function * with arity (2)
\def\opdifferenceonefn#1{{-#1}}% How to print function - with arity (1)
\def\opdifferencetwofn#1#2{{#1-#2}}% How to print function - with arity (2)
\def\opplustwofn#1#2{{#1+#2}}% How to print function + with arity (2)
\begin{alltt}
\pvsid{PartialRefTemplatesTrans}: \pvskey{THEORY}
\pvskey{BEGIN}
\pvskey{IMPORTING} \pvsid{CKmultiple}
\pvsid{am}, \pvsid{am1}, \pvsid{am2}, \pvsid{pairs}: \pvskey{VAR} \pvsid{AM}\vspace*{\pvsdeclspacing}
\(a\), \(a\sb{1}\), \(a\sb{2}\): \pvskey{VAR} \pvsid{Asset}\vspace*{\pvsdeclspacing}
\pvsid{an}: \pvskey{VAR} \pvsid{AssetName}\vspace*{\pvsdeclspacing}
\(s\): \pvskey{VAR} \pvsid{set}\({\pvsbracketl}\)\pvsid{Configuration}\({\pvsbracketr}\)\vspace*{\pvsdeclspacing}
\pvsid{fm}, \pvsid{fm2}: \pvskey{VAR} \pvsid{FM}\vspace*{\pvsdeclspacing}
\pvsid{ck}, \pvsid{ck2}: \pvskey{VAR} \pvsid{CK}\vspace*{\pvsdeclspacing}
\pvsid{it}, \pvsid{it2}: \pvskey{VAR} \pvsid{Item}\vspace*{\pvsdeclspacing}
\pvsid{its}: \pvskey{VAR} \pvsid{list}\({\pvsbracketl}\)\pvsid{Item}\({\pvsbracketr}\)\vspace*{\pvsdeclspacing}
\(c\): \pvskey{VAR} \pvsid{Configuration}\vspace*{\pvsdeclspacing}
\(P\), \(Q\): \pvskey{VAR} \pvsid{Name}\vspace*{\pvsdeclspacing}
\pvsid{exp}: \pvskey{VAR} \pvsid{Formula\_}\vspace*{\pvsdeclspacing}
\pvsid{anSet}: \pvskey{VAR} \pvsid{set}\({\pvsbracketl}\)\pvsid{AssetName}\({\pvsbracketr}\)\vspace*{\pvsdeclspacing}
\pvskey{IMPORTING} \pvsid{PartialRefinement}\({\pvsbracketl}\)\pvsid{Configuration}, \pvsid{FM}, \pvsid{semantics}, \pvsid{Asset}, \pvsid{AssetName}, \pvsid{CK}, \pvsid{semantics}\({\pvsbracketr}\)
\pvsid{pl}, \pvsid{pl2}: \pvskey{VAR} \pvsid{PL}\vspace*{\pvsdeclspacing}
\pvsid{addCKLinesBeforePartialRef}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{pl}, \pvsid{ck2}, \pvsid{its}, \(s\):
\pvsid{(}\pvsid{(}\(s\) \(=\) \(\Diamond\) \pvsid{(}\pvsid{exps}\pvsid{(}\pvsid{its}\pvsid{)}, \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\pvsid{ck2} \(=\) \pvsid{append}\pvsid{(}\pvsid{its}, \(K\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(A\) \pvskey{:=} \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\) \pvskey{:=} \pvsid{ck2}\pvsid{\#)}\vspace*{\pvsdeclspacing}
\pvsid{addCKLinesAfterPartialRef}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{pl}, \pvsid{ck2}, \pvsid{its}, \(s\):
\pvsid{(}\pvsid{(}\(s\) \(=\) \(\Diamond\) \pvsid{(}\pvsid{exps}\pvsid{(}\pvsid{its}\pvsid{)}, \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\pvsid{ck2} \(=\) \pvsid{append}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl}\pvsid{)}, \pvsid{its}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(A\) \pvskey{:=} \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\) \pvskey{:=} \pvsid{ck2}\pvsid{\#)}\vspace*{\pvsdeclspacing}
\pvsid{removeCKLinesBeforePartialRef}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{pl}, \pvsid{ck2}, \pvsid{its}, \(s\):
\pvsid{(}\pvsid{(}\(s\) \(=\) \(\Diamond\) \pvsid{(}\pvsid{exps}\pvsid{(}\pvsid{its}\pvsid{)}, \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\(K\)\pvsid{(}\pvsid{pl}\pvsid{)} \(=\) \pvsid{append}\pvsid{(}\pvsid{its}, \pvsid{ck2}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(A\) \pvskey{:=} \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\) \pvskey{:=} \pvsid{ck2}\pvsid{\#)}\vspace*{\pvsdeclspacing}
\pvsid{removeCKLinesAfterPartialRef}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{pl}, \pvsid{ck2}, \pvsid{its}, \(s\):
\pvsid{(}\pvsid{(}\(s\) \(=\) \(\Diamond\) \pvsid{(}\pvsid{exps}\pvsid{(}\pvsid{its}\pvsid{)}, \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\(K\)\pvsid{(}\pvsid{pl}\pvsid{)} \(=\) \pvsid{append}\pvsid{(}\pvsid{ck2}, \pvsid{its}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(A\) \pvskey{:=} \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\) \pvskey{:=} \pvsid{ck2}\pvsid{\#)}\vspace*{\pvsdeclspacing}
\pvsid{changeCKLineBeforePartialRef}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{pl}, \pvsid{ck2}, \pvsid{it}, \pvsid{it2}, \pvsid{its}, \(s\):
\pvsid{(}\pvsid{(}\(s\) \(=\) \(\setsotherintersectiontwofn{\Diamond \pvsid{(}\pvsid{getExp}\pvsid{(}\pvsid{it}\pvsid{)}, F\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}}{\Diamond \pvsid{(}\pvsid{getExp}\pvsid{(}\pvsid{it2}\pvsid{)}, F\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}}\) \(\wedge\)
\(K\)\pvsid{(}\pvsid{pl}\pvsid{)} \(=\) \pvsid{cons}\pvsid{(}\pvsid{it}, \pvsid{its}\pvsid{)} \(\wedge\)
\pvsid{ck2} \(=\) \pvsid{cons}\pvsid{(}\pvsid{it2}, \pvsid{its}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(A\) \pvskey{:=} \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\) \pvskey{:=} \pvsid{ck2}\pvsid{\#)}\vspace*{\pvsdeclspacing}
\pvsid{removeFeature}\pvsid{(}\pvsid{fm}, \pvsid{fm2}, \(P\), \(Q\)\pvsid{)}: \pvsid{bool} \pvskey{=}
\pvsid{formulae}\pvsid{(}\pvsid{fm2}\pvsid{)} \(=\) \pvsid{filterFormulae}\pvsid{(}\pvsid{fm}, \(Q\)\pvsid{)} \(\wedge\)
\pvsid{features}\pvsid{(}\pvsid{fm2}\pvsid{)} \(=\) \(\setsotherremovetwofn{Q}{\pvsid{features}\pvsid{(}\pvsid{fm}\pvsid{)}}\)\vspace*{\pvsdeclspacing}
\pvsid{syntaxRemoveFeature}\pvsid{(}\pvsid{fm}, \pvsid{fm2}, \pvsid{am}, \pvsid{ck}, \pvsid{ck2}, \(P\), \(Q\), \pvsid{it}, \pvsid{pairs}, \pvsid{an}, \(a\)\pvsid{)}: \pvsid{bool} \pvskey{=}
\pvsid{removeFeature}\pvsid{(}\pvsid{fm}, \pvsid{fm2}, \(P\), \(Q\)\pvsid{)} \(\wedge\)
\pvsid{features}\pvsid{(}\pvsid{fm}\pvsid{)}\pvsid{(}\(P\)\pvsid{)} \(\wedge\)
\pvsid{features}\pvsid{(}\pvsid{fm}\pvsid{)}\pvsid{(}\(Q\)\pvsid{)} \(\wedge\)
\pvsid{am} \(=\) \pvsid{ow}\pvsid{(}\pvsid{(}\pvsid{an}, \(a\)\pvsid{)}, \pvsid{pairs}\pvsid{)} \(\wedge\)
\pvsid{ck} \(=\) \pvsid{cons}\pvsid{(}\pvsid{it}, \pvsid{ck2}\pvsid{)} \(\wedge\) \pvsid{getRS}\pvsid{(}\pvsid{it}\pvsid{)} \(=\) \pvsid{IFDEF}\pvsid{(}\pvsid{an}, \({\pvskey{TRUE}}\)\pvsid{)}\vspace*{\pvsdeclspacing}
\pvsid{conditionsRemoveFeature}\pvsid{(}\pvsid{fm}, \pvsid{it}, \pvsid{pairs}, \(P\), \(Q\), \pvsid{ck}\pvsid{)}: \pvsid{bool} \pvskey{=}
\pvsid{(}\pvskey{forall} \(c\): \pvsid{satisfies}\pvsid{(}\pvsid{exp}\pvsid{(}\pvsid{it}\pvsid{)}, \(c\)\pvsid{)} \(\Rightarrow\) \pvsid{satisfies}\pvsid{(}\pvsid{NAME\_FORMULA}\pvsid{(}\(Q\)\pvsid{)}, \(c\)\pvsid{)}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvskey{forall} \pvsid{exp}:
\pvsid{exps}\pvsid{(}\pvsid{ck}\pvsid{)}\pvsid{(}\pvsid{exp}\pvsid{)} \(\wedge\) \pvsid{satisfies}\pvsid{(}\pvsid{exp}, \(c\)\pvsid{)} \(\Rightarrow\) \(\neg\) \pvsid{satisfies}\pvsid{(}\pvsid{NAME\_FORMULA}\pvsid{(}\(Q\)\pvsid{)}, \(c\)\pvsid{)}\pvsid{)}
\(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{semantics}\pvsid{(}\pvsid{fm}\pvsid{)}\pvsid{(}\(c\)\pvsid{)} \(\Rightarrow\)
\pvsid{satisfies}\pvsid{(}\pvsid{IMPLIES\_FORMULA}\pvsid{(}\pvsid{NAME\_FORMULA}\pvsid{(}\(Q\)\pvsid{)}, \pvsid{NAME\_FORMULA}\pvsid{(}\(P\)\pvsid{)}\pvsid{)},
\(c\)\pvsid{)}\pvsid{)}\vspace*{\pvsdeclspacing}
\pvsid{removeFeaturePartialRef}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{(}\pvsid{pl}, \pvsid{fm2}, \pvsid{ck2}, \(s\), \pvsid{it}, \pvsid{pairs}, \(P\), \(Q\), \pvsid{an}, \(a\)\pvsid{)}:
\pvsid{(}\pvsid{(}\pvsid{syntaxRemoveFeature}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(F\)\pvsid{(}\pvsid{pl2}\pvsid{)}, \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}, \(P\), \(Q\), \pvsid{it},
\pvsid{pairs}, \pvsid{an}, \(a\)\pvsid{)}
\(\wedge\)
\pvsid{conditionsRemoveFeature}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \pvsid{it}, \pvsid{pairs}, \(P\), \(Q\), \(K\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\(s\) \(=\) \(\Diamond\) \pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \pvsid{NOT\_FORMULA}\pvsid{(}\pvsid{NAME\_FORMULA}\pvsid{(}\(Q\)\pvsid{)}\pvsid{)}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl2}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \pvsid{fm2}, \(A\) \pvskey{:=} \(A\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(K\) \pvskey{:=} \pvsid{ck2}\pvsid{\#)}\vspace*{\pvsdeclspacing}
\pvsid{removeIfDefFromCode}: \pvskey{THEOREM}
\pvskey{forall} \pvsid{(}\pvsid{pl}, \(s\), \pvsid{am2}, \pvsid{its}, \pvsid{pairs}, \pvsid{an}, \(a\), \(a\sb{2}\)\pvsid{)}:
\pvsid{(}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl}\pvsid{)} \(=\) \pvsid{ow}\pvsid{(}\pvsid{(}\pvsid{an}, \(a\)\pvsid{)}, \pvsid{pairs}\pvsid{)} \(\wedge\)
\pvsid{am2} \(=\) \pvsid{ow}\pvsid{(}\pvsid{(}\pvsid{an}, \(a\sb{2}\)\pvsid{)}, \pvsid{pairs}\pvsid{)} \(\wedge\)
\(\neg\) \pvsid{preprocessfile}\pvsid{(}\(a\), \({\pvskey{TRUE}}\)\pvsid{)} \(=\) \pvsid{preprocessfile}\pvsid{(}\(a\sb{2}\), \({\pvskey{TRUE}}\)\pvsid{)} \(\wedge\)
\pvsid{preprocessfile}\pvsid{(}\(a\), \({\pvskey{FALSE}}\)\pvsid{)} \(=\) \pvsid{preprocessfile}\pvsid{(}\(a\sb{2}\), \({\pvskey{FALSE}}\)\pvsid{)} \(\wedge\)
\(s\) \(=\) \(\Diamond\) \pvsid{(}\pvsid{exps}\pvsid{(}\pvsid{its}\pvsid{)}, \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)} \(\wedge\)
\pvsid{(}\pvskey{forall} \(c\):
\pvsid{(}\(\neg\) \(s\)\pvsid{(}\(c\)\pvsid{)} \(\wedge\) \pvsid{semantics}\pvsid{(}\(F\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)} \(\Rightarrow\)
\pvsid{SPLrefinement}.\pvsid{wfProduct}\pvsid{(}\pvsid{semantics}\pvsid{(}\(K\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(A\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{)}\pvsid{(}\(c\)\pvsid{)}\pvsid{)}\pvsid{)}\pvsid{)}
\(\Rightarrow\) \pvsid{strongPartialRefinement}\pvsid{(}\pvsid{pl}, \pvsid{pl2}, \(s\)\pvsid{)}\pvsid{)}
\pvskey{WHERE} \pvsid{pl2} \pvskey{=} \pvsid{(\#}\(F\) \pvskey{:=} \(F\)\pvsid{(}\pvsid{pl}\pvsid{)}, \(A\) \pvskey{:=} \pvsid{am2}, \(K\) \pvskey{:=} \(K\)\pvsid{(}\pvsid{pl}\pvsid{)}\pvsid{\#)},
\pvsid{its} \pvskey{=} \{\pvsid{it} | \pvsid{getRS}\pvsid{(}\pvsid{it}\pvsid{)} \(=\) \pvsid{IFDEF}\pvsid{(}\pvsid{an}, \({\pvskey{TRUE}}\)\pvsid{)}\}\vspace*{\pvsdeclspacing}
\pvskey{END} \pvsid{PartialRefTemplatesTrans}\end{alltt}