We provide our ShineOn model checkpoint on Google Drive.
Reconstruction tests how well model can synthesize the person re-wearing their ORIGINAL clothes.
-
Warp Module
The warp module takes the product images
python test.py \ --name reconstruction_warp \ --model warp \ --workers 4 \ --batch 4 \ --dataset vvt \ --datamode test \ --checkpoint experiments/path/to/WARP/checkpoint.ckpt
-
Try-on Module
python test.py \ --name reconstruction_try_on \ --model unet \ --workers 4 \ --batch 4 \ --dataset vvt \ --datamode test \ --checkpoint experiments/path/to/UNET/checkpoint.ckpt \ --warp_cloth_dir \ test_results/reconstruction/checkpoint.ckpt/test/VVTDataset/warp-cloth
Try-on tests how well the model can synthesize the person wearing a NEW article of clothing.
Use the flag --tryon_list
to choose your CSV file that specifies cloth-person try on
pairs.
The CSV file should be formatted with two columns (no headers):
path/to/cloth/product_image.png, VIDEO_ID
where path/to/cloth/product_image.png
is a path to the cloth image, and VIDEO_ID
is the name of a video folder containing the frames for one person.
-
Warp Module
The
warp-cloth
folder must be generated for everytryon_file.csv
you have.python test.py \ --name warp_try_on \ --model warp \ --workers 4 \ --batch 4 \ --dataset vvt \ --datamode test \ --checkpoint experiments/path/to/WARP/checkpoint.ckpt \ --tryon_list path/to/tryon_file.csv
-
Try-on Module
python test.py \ --name complete_try_on \ --model unet \ --workers 4 \ --batch 4 \ --dataset vvt \ --datamode test \ --checkpoint experiments/path/to/UNET/checkpoint.ckpt \ --tryon_list path/to/tryon_file.csv \ --warp_cloth_dir \ test_results/tryon/checkpoint.ckpt/test/VVTDataset/warp-cloth