forked from andrewjong/ShineOn-Virtual-Tryon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
88 lines (68 loc) · 2.9 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import torch
from PIL import Image
def tensor_for_board(img_tensor):
assert (
img_tensor.ndim == 4
), f"something's not right, i'm not a standard img_tensor. {img_tensor.shape=}"
# map into [0,1]
tensor = (img_tensor.clone() + 1) * 0.5
try:
tensor.cpu().clamp(0, 1)
except:
tensor.float().cpu().clamp(0, 1)
if tensor.shape[1] == 1: # masks, make it RGB
tensor = tensor.repeat(1, 3, 1, 1)
return tensor
def tensor_list_for_board(img_tensors_list):
grid_h = len(img_tensors_list)
grid_w = max(len(img_tensors) for img_tensors in img_tensors_list)
batch_size, channel, height, width = tensor_for_board(img_tensors_list[0][0]).size()
canvas_h = grid_h * height
canvas_w = grid_w * width
canvas = torch.FloatTensor(batch_size, channel, canvas_h, canvas_w).fill_(0.5)
for i, img_tensors in enumerate(img_tensors_list):
for j, img_tensor in enumerate(img_tensors):
offset_h = i * height
offset_w = j * width
tensor = tensor_for_board(img_tensor)
canvas[
:, :, offset_h : offset_h + height, offset_w : offset_w + width
].copy_(tensor)
return canvas
def board_add_image(board, tag_name, img_tensor, step_count):
tensor = tensor_for_board(img_tensor)
for i, img in enumerate(tensor):
board.add_image("%s/%03d" % (tag_name, i), img, step_count)
def board_add_images(board, tag_name, img_tensors_list, step_count):
tensor = tensor_list_for_board(img_tensors_list)
for i, img in enumerate(tensor):
board.add_image(f"{tag_name}/{i:03d}", img, step_count)
def get_save_paths(save_dirs, img_names):
return [os.path.join(s, i) for s, i in zip(save_dirs, img_names)]
def save_images(img_tensors, img_names, save_dirs):
""" Save a batch of image tensors """
if len(save_dirs) == 1:
save_dirs = [save_dirs] * len(img_names)
for img_tensor, img_name, save_dir in zip(img_tensors, img_names, save_dirs):
if "warp-mask" in save_dir and "VitonDataset" not in save_dir:
# if it's warp mask and we're not VitonDataset, skip saving
continue
path = os.path.join(save_dir, img_name)
if os.path.exists(path):
# tqdm.write(f"Skipping {path}, already exists!")
continue
tensor = (img_tensor.clone() + 1) * 0.5 * 255
tensor = tensor.cpu().clamp(0, 255)
array = tensor.numpy().astype("uint8")
if array.shape[0] == 1:
array = array.squeeze(0)
elif array.shape[0] == 3:
array = array.swapaxes(0, 1).swapaxes(1, 2)
else:
raise ValueError(
"Trying to save an image that is not 1 or 3 channels; "
f"this is unexpected. {array.shape=}"
)
os.makedirs(os.path.dirname(path), exist_ok=True)
Image.fromarray(array).save(path)