
Sputnik: a Stochastic Petri Net Library in Python

Philipp Buerger, Erik Clark, Benjamin Moore, Oliver Palmer

March 21, 2013

Contents

1 Installation 3

2 Quick start 4

3 Introduction 5

4 Using the library: GUI 7

4.1 Basic functions . 9

4.2 Simulation . 11

5 Using the library: command-line 13

5.1 Help documentation . 13

5.2 Import and export of Petri nets . 14

5.3 Manually inputting a Petri net . 17

5.4 Create a PetriNet object . 18

5.5 Petri net visualisation . 20

5.6 Calculating the invariants . 24

5.7 Running a simulation . 24

5.8 Plotting simulation diagrams . 28

6 Examples 30

6.1 Example 1 : Repressilator . 30

6.2 Example 2 : Four-reaction system . 34

6.3 Example 3 : MAP kinase . 36

1

7 Extending the library 38

7.1 Extending the GUI . 38

7.2 Adding additional language support . 41

7.3 Adding additional simulation algorithms . 42

References 43

2

1. Installation

Sputnik encompasses a range of tools that allow the design, simulation and analysis of

stochastic Petri nets. Sputnik is written for use with Python version 2.7 and has been

tested on both Linux and OSX operating systems. It has the following dependencies:

Essential libraries:

NumPy,† Scipy,† matplotlib,† gtk, pygtk.

Optional libraries:

libsbml - Required if SBML import functionality is desired

†We recommend using the Enthought Python Distribution which is free for academic use and in-

cludes Python 2.7.2, NumPy, Scipy and matplotlib.

Having downloaded the latest version of Sputnik from https://github.com/sputnikpetrinets/

project_sputnik/, first extract the files using the following command:

> unzip project_sputnik-master.zip

To run the GUI, simply call python run-sputnik.py from the project sputnik-master

directory. To import the library for use in other Python scripts, move the directory to

somewhere on your PYTHONPATH. Similarly, to make the GUI accessible system-wide, move

the directory to one listed in your shell’s PATH.

3

https://github.com/sputnikpetrinets/project_sputnik/
https://github.com/sputnikpetrinets/project_sputnik/

2. Quick start

To jump into the program without reading the full documentation, follow this short vignette

which is explained in more detail in section 6.1.

1. Open the Sputnik GUI with python start.py

2. Use to open the repressilator.txt file found in the examples/ directory.

3. View the calculated net invariants with .

4. Open the simulation options, set Runtime to, for example, 100000 and Time-Step

to 500 and click Start Simulation.

5. After a few seconds, an info-box will inform you the simulation is finished, click Close.

6. Now in the lower-right Places pane, uncheck ‘Plot’ for all places except pA, pB and pC

— these are the three proteins of interest. Click Show Plot to see the results.

7. Optionally, use the various plot settings to add a title, choose custom line colours and

edit legend-text and use the plot window dialogue to save the simulation plot.

8. Repeat the simulation by increasing the Number of Simulations to 4. Check the

Create subplots checkbox and enter 2 in Subplot Rows and Columns to create a

2⇥ 2 plot of all four simulations — highlighting the stochastic variation between runs.

9. Close the Simulation window and click to view a token game animation of simulated

Petri net events. Click OK to use the default parameters.

10. The play button will then step through the simulation, highlighting firing transitions

in red and updating the place markings as tokens are exchanged. You can also pause

and step through each event using and .

For more detailed examples and a full explanation of Sputnik’s features and capabilities,

consult sections 4, 5 and 6.

4

3. Introduction

Petri nets [1] are a versatile and understandable graph notation which can be used to represent

many kinds of network. They o↵er an unambiguous mathematical framework to describe

a system, as well as providing the means to test hypotheses regarding its behaviour and

properties [2]. Having evolved in mathematics and computer science [3], Petri nets have more

recently been used by systems biologists for the purpose of modelling biological systems [4,5,6].

Stochastic Petri nets are a form of Petri net suitable for simulating systems with stochastic

mass action kinetics. They are therefore a convenient way to represent and simulate systems

where low species abundances result in appreciable intrinsic noise [7]. Such systems include

gene regulatory networks, signalling systems, and many metabolic networks.

A Petri net consists of four types of element: places, transitions, arcs and tokens. Places

are nodes representing the components of a system, while transitions represent reactions or

events. Arcs are directed edges that connect the two. Each arc is associated with an integer

weight representing the stoichiometry of the transitions. The state of the system is given

by the distribution of tokens among the places; the number of tokens possessed by a place

is known as its marking. The firing of a particular transition, known as an “event”, moves

tokens between places as directed by the pre and post arcs, changing the “global marking”

of the system. A particular transition is “enabled” only if the markings of all its input places

at least equal the weights of the corresponding pre arcs. Places may have a “capacity”, a

maximum number of tokens that can be possessed by the place. “Test arcs” and “inhibitory

arcs”, which represent minimum and maximum marking conditions respectively, may provide

additional checks on whether a particular transition is enabled, but do not directly result in

the consumption of tokens. The “P -invariants” of a net are combinations of places with a

constant total marking, while the “T -invariants” are patterns of transition firings that leave

the global marking unchanged [8]. Firings are probabilistic and associated with stochastic

rate constants, with exponentially distributed waiting times between events [2].

5

Here we present a Python library, Sputnik that provides a range of tools for construct-

ing, visualising, analysing and simulating stochastic Petri nets, accessible either from the

command-line or from a user-friendly GUI. Petri net models may be imported from file, or

created de novo using the Petri net editor. Automatic layouting of the nets is achieved via

a choice of drawing algorithms, while net components can also be manually repositioned for

fine-tuning. Petri nets may be simulated by either of two stochastic simulation algorithms,

the Gillespie [9] or the tau-leap [10], and the resulting timecourses can be visualised in cus-

tomisable plots. Net properties such as the P - and T -invariants, the stoichiometry matrix

and the dependency matrix can also be calculated.

In addition to defining a TXT format for storing Petri net models, Sputnik also supports the

systems biology exchange formats Systems Biology Markup Language (SBML) [11] and Petri

Net Markup Language (PNML) [12]. Petri nets may be saved or retrieved in any of these three

file formats, ensuring cross-compatibility with the growing body of systems biology software

already available. Petri net visualisations may be exported in a variety of common image

formats, and the layout coordinates may additionally be saved to file, to be re-imported the

next time the Petri net is loaded. Simulation visualisations may also be saved, or the raw

data exported for further analysis. A basic data flow diagram describing these processes is

shown in Figure 3.1.

Figure 3.1: A basic data flow diagram showing the library’s inputs, out-
puts and core internal structure. The two core data containers, PetriNet
and PetriNetData, are further discussed in sections 5.3 and 5.4

We advise that you read through the Examples to get a feel for how the library works: For

full instructions on using the GUI, see Chapter 4; if you prefer to write your own scripts, see

Chapter 5 for documentation covering the relevant methods and variables.

6

4. Using the library: GUI

All Sputnik functionality is readily accessible through the graphical user interface (GUI).

Figure 4.1 shows a general view of the main window of the GUI.

Figure 4.1: The main window of the GUI, shown displaying the “Repressilator”
model [13].

All of the library’s capabilities can be accessed quickly and easily, via the row of icons in

the menu bar above the drawing area. All of the icons used are freely available for private

and commercial use under a Creative Commons Attribution-Share Alike [14] (CC BY-SA 3.0)

license from the Open Icon Library [15]. Table 4.1 provides a short explanation for each of

the icon buttons in the main window (Figure 4.1).

7

Icon Shortcut Description

Ctrl + O Open Petri net

Ctrl + I Open layout

Ctrl + S Save Petri net

Ctrl + E Save layout

Ctrl + P Export Petri Net

Ctrl + Z Undo

Del Delete

- (minus) Zoom out

+ (plus) Zoom in

Ctrl + C Copy

Ctrl + V Paste

F5 Refresh

Alt + L Layout algorithms

Alt + D Simulation plot

Alt + I Calculate invariants

Alt + G Token Game simulation

B Previous step

R Play

P Pause

S Stop

F Next step

Ctrl + L Lock

F6 Add Place

F7 Add Transition

F8 Add Standard Arc

F9 Add Inhibitory Arc

F10 Add Test Arc

Alt + F4 Exit

Esc Abort

Table 4.1: Summary of the button icons found in the GUI main toolbar

8

4.1 Basic functions

Loading and saving Petri nets can be loaded from TXT, PNML or SBML files, and

saved in any of these formats. The current layout can be saved to file and loaded

again in the future. The visualisation of the net can be saved as an image file, in PDF,

PS or SVG format.

Visualisation On loading a file, the Petri net will be laid out by a spectral graph draw-

ing algorithm using the default settings. To configure the layout, click to open the

layout window. Width and Height determine the drawing area size, while the Border op-

tion prevents net components from being drawn too close to the edges of the drawing area.

DisplacementRadius defines the minimum distance between components. Components can

also be positioned manually by clicking and dragging. Multiple components can be selected

at once by holding Ctrl while drawing a box around an area. Zoom in and out using

and .

Editing the Petri net Add components by clicking on the correct icon (place ; tran-

sition ; standard arc , test arc ; inhibitory arc) and then clicking to place the

component on screen. When placing arcs, the first click places the start of the arc and the

second click places the arrow head end. Standard arcs must connect a place to a transition

or vice versa, while other arcs must connect a place to a transition only; acceptable connec-

tions will be highlighted green, unacceptable connections red. Components can be copied

and pasted either using keyboard shortcuts or by clicking on and . The copied

component will be overlaid on the original, ready to be manually repositioned. Components

can be deleted using Del or clicking . Deleting a place or transition will also delete the

arcs connected to it. Click to lock the current state, and to undo an action. To

modify a component, double click the component to bring up a properties window and enter

the desired changes.

P - and T -invariants Calculate and display the invariants by clicking .

9

Animation To display an animation of the Petri net simulated by the Gillespie algorithm,

click . The animation shows each iteration of the simulation, highlighting the event that

occurred. The transition, place(s) and arc(s) involved are highlighted in red, and the mark-

ings are updated appropriately. The animation is controlled by a player-like menu, giving

options to jump forward () or backward () one iteration, play continously (),

pause (), or stop (). There is also a progress bar displayed below the icons, which

can be clicked to jump to a specific position in the simulation. Figure 4.2 shows a view of an

animation of the Lotka-Volterra model in progress.

Figure 4.2: Petri net simulation animation The “predation” transition, which
involves both places, “X1” and “X2” is firing.

10

4.2 Simulation

Figure 4.3 shows the simulation window.

Figure 4.3: Simulation window showing simulation and plotting options.

Simulation options In most cases the Gillespie algorithm should be used, and the only

settings to adjust are Run Time and T ime Step. Multiple runs can be carried out at once by

changing the Number of Simulations option. See section 5.7 for information on selecting a

simulation algorithm and adjusting simulation parameters.

Plot options These options control settings for the whole plot, such as title, line width

and axis labels. Legend position is controlled in the same way as for the matplotlib package.

Save alterations by clicking Save Settings. The default is a single plot; create subplots by

checking the Create Subplots button.

Subplot options These options control the settings for each individual subplot. If mul-

tiple simulations have been performed when the “Create Subplots” option is selected, each

11

simulation will be rendered as a subplot. If only one simulation was run, subplots will be

generated for each species’ timecourse. Save alterations by clicking Save Settings.

Line options These options settings for each invididual timecourse within a plot, for ex-

ample line colour and the label to be displayed in the legend. Checkboxes determine which

timecourses to plot. To customise line colour, deselect the Automatic Colour Allocation

checkbox and then use the colour selector. Save alterations by clicking Save Settings.

12

5. Using the library:

command-line

5.1 Help documentation

PyDoc [16] is a module within Python used for documentation purposes. It generates docu-

mentation for classes and modules automatically from “docstring” comments within the code

and can be displayed on the console, exported as HTML files or handed directly to a Web

browser.

The documentation folder contains PyDoc-generated HTML files providing extensive docu-

mentation for all the classes, methods and variables of the Sputnik code. To consult PyDoc

documentation from within the Python Interactive Environment, issue one of the commands:

1\begin { smal l }

2## For in fo rmat ion about a s p e c i f i c c l a s s :

3help(<module name>.<ClassName>)

4

5## For in fo rmat ion about a s p e c i f i c method :

6help(<module name>.<ClassName>.<method name>)

7

8\end{ smal l }

13

5.2 Import and export of Petri nets

5.2.1 Loading a Petri net

In Sputnik, file input is parsed to PetriNetData via:

Input file !

8
>>>><

>>>>:

RLexerTxt

RLexerSBML

RLexerPNML

9
>>>>=

>>>>;

Tokens�����! RParser
Petri net������! Petri Net Data

Loading a Petri net in this way, through iPython or using a script, requires the import of

two classes, a general parser RParser() and a lexer that is specific to the file type you are

opening, i.e. RLexerTxt(), RLexerSBML() or RLexerPNML(). As an example, the following

commands will parse a .txt file to a PetriNetData object p:

1import s pu tn i k i o

2

3l e x e r = spu tn i k i o . RLexerTxt ()

4par s e r = spu tn i k i o . RParser ()

5i n p u t f i l e = open (’ e xamp l e f i l e . txt ’)

6tokens = l e x e r . l e x (i n p u t f i l e)

7par s e r . data = tokens

8par s e r . parse ()

9p = par s e r . output

5.2.2 Saving a Petri net

In order to save a Petri net stored in a PetriNetData object p, the following process is

implemented:

PetriNetData
Petri net������!

8
>>>><

>>>>:

WConverterTxt

WConverterPNML

WConverterSBML

9
>>>>=

>>>>;

! Output file

14

To perform these actions as part of a script, for example to save to PNML format, the

following commands can be issued:

1import s pu tn i k i o

2

3conve r t e r = spu tn i k i o .WConverterPNML(p)

4conve r t e r . save (’ output f i l ename . pnml ’)

5.2.3 Text format specification

Writing a plain text file is often the fastest way to define a new Petri net for use with Sputnik.

The text format closely mirrors a mathematical Petri net definition, and is specified below.

Places – a list of strings that represent identifiers for each Petri net place.

Required: Yes

Syntax: p / places

Example: p = [prey,predator]

Transitions – a list of strings identifying transition names.

Required: Yes

Syntax: t / transitions

Example: t = [preyBirth,predation,predatorDeath]

Pre – a matrix describing the weights of arcs connecting places to transitions.

Required: Yes

Syntax: pre / pre arcs / pre arcs

Example: pre = [[1,0],[1,1],[0,1]]

Post – a matrix describing the weights of arcs connecting transitions to places.

Required: Yes

Syntax: post / post arcs / post arcs

Example: post = [[2,0],[0,2],[0,0]]

Initial marking – a list of integers that count the number of tokens in each place prior to

simulation. Should be the same length as places.

15

Required: No (set to 0 if absent)

Syntax: m / markings

Example: m = [100,20]]

Rates – a list of numbers that represent the stochastic rate constants associated with each

transition.

Required: No (set to 0 if absent)

Syntax: r / rates

Example: r = [1,0.005,0.6]

Capacities – a list of integers defining the maximum number of tokens allowed in each

place. If present, must have the same length as places.

Required: No

Syntax: c / capacities

Example: c = [500,500]

Inhibitory arcs – a matrix describing a logical test performed on place markings to enable

or disable a transition. Transitions will not fire if stated markings are above the values

stated in this matrix (zeros are ignored), otherwise they fire as normal.

Required: No

Syntax: i / inhib / inhibitory arcs / inhibitory arcs

Example: inhib = [[600,0],[0,0],[400,0]]

Test arcs – a matrix describing a logical test performed on place markings to enable or

disable a transition. Transitions will not fire if stated markings are below or equal to

the values stated in this matrix, otherwise they fire as normal.

Required: Yes

Syntax: test / test arcs / test arcs

Example: test = [[2,0],[2,0],[0,2]]

16

5.2.4 Standalone file conversion

Standalone file conversion can be performed using fconvert. This must be run with two

parameters, input and output filenames (relative or absolute paths), in the form:

$./fconvert inputfile.txt outputfile.xml

File extensions .txt, .sbml, .pnml and .xml are automatically detected, otherwise the user

will be prompted to state the file type.

Note: the ability to read and write SBML requires the freely avalaible libSBML Python API

(http://sbml.org/Software/libSBML/docs/python-api/).

5.3 Manually inputting a Petri net

A stochastic Petri net is defined by the n-tuple N = {P , T , Pre, Post, M 0, R, C*, Test*,

Inhib*}, where the starred elements are optional. A Petri net model may be input manu-

ally, by creating a sputnik petrinet.PetriNetData() object and then setting its instance

variables as the appropriate NumPy matrices and arrays. The Pre and Post matrices are

stored in a sputnik petrinet.Stoich() object that is set as the stoichiometry instance

variable of the PetriNetData() object. Refer to the TXT input format specification for the

required dimensions of the data elements. A PetriNetData object p should be created using

the following template:

1import numpy as np

2import s pu tn i k p e t r i n e t

3

4p = spu tn i k p e t r i n e t . PetriNetData ()

5p . s t o i ch i omet ry = spu tn i k p e t r i n e t . S to i ch ()

6p . s t o i ch i omet ry . p r e a r c s = np . matrix(<pos t a rc matr ix >, dtype=in t

)

7p . s t o i ch i omet ry . p o s t a r c s = np . matrix(<pos t a rc matr ix >, dtype=

in t)

8

9p . p l a c e s = np . array(<p l a c e l a b e l s >)

10p . t r a n s i t i o n s = np . array(< t r a n s i t i o n l a b e l s >)

11p . r a t e s = np . array(< ra te s >, dtype=f l o a t)

12p . i n i t i a l ma r k i n g = np . array(< i n i t i a l ma rk i n g >, dtype=in t)

13

17

14## OPTIONAL

15p . c a p a c i t i e s = np . array(< c apa c i t i e s >, dtype=in t)

16p . t e s t a r c s = np . matrix(<pos t a rc matr ix >, dtype=in t)

17p . i n h i b i t o r y a r c s = np . matrix(<pos t a rc matr ix >, dtype=in t)

18

19## Ca l cu l a t e net p r o p e r t i e s (r e qu i r ed f o r s imu la t i on s)

20p . s t o i ch i omet ry . c a l c u l a t e s t o i c h i ome t r y ma t r i x ()

21p . s t o i ch i omet ry . ca l cu la t e dependency matr ix ()

22p . s t o i ch i omet ry . ca l cu late consumed ()

23p . s t o i ch i omet ry . c a l c u l a t e s p e c i e s h o r s ()

5.4 Create a PetriNet object

Whereas the PetriNetData object created in the above sections contains a mathematical

representation of a Petri net (data elements are matrices and arrays), a PetriNet object

contains representations of each individual component (place, transition or arc) which each

have certain properties (labels, markings, rates, weights etc.). PetriNet objects are used by

the visualisation part of the library, while the simulation, invariant calculation and parsers

use PetriNetData objects. The corresponding PetriNetData object of a PetriNet object

is accessed through its petrinetdata variable. All component classes inherit from a general

Component parent class.

To create a PetriNet object pn from a PetriNetData object pn:

1## in s t a n t i a t e a Petr iNet o b j e c t

2pn = spu tn i k p e t r i n e t . Petr iNet ()

3

4## ass i gn the PetriNetData o b j e c t

5pn . p e t r i n e t d a t a = p

6

7## crea t e the components

8pn . convert components ()

5.4.1 Edit a PetriNet object

The framework permits individual components to be instantiated from the command line and

added to a PetriNet object. After editing a Petri net in this way, the PetriNet class method

18

convert matrices() method must be run to update the corresponding PetriNetData ob-

ject. Example code is presented below for completeness, although we strongly suggest the

user either uses the GUI for this, or just alters the PetriNetData properties directly, then

reruns the converter to update the components. Another simple solution would be to alter a

TXT input file appropriately and then reimport it.

1import s pu tn i k p e t r i n e t

2

3## crea t e the s i n g l e components o f a p e t r i net

4

5## crea t e a p l ace

6p = spu tn i k p e t r i n e t . Place ([1 0 0 . 0 , 5 0 . 0] , 1 5 . , [0 . , 0 . , 0 .] ,

[2 5 5 . , 255 . , 2 5 5 .])

7p . l a b e l = ”Place ”

8p . key = ”Place ”

9p . marking = <marking>

10

11## crea t e a t r a n s i t i o n

12t = spu tn i k p e t r i n e t . Trans i t i on ([5 0 . 0 , 5 0 . 0] , [1 5 , 3 0] , [0 . , 0 . ,

0 .] , [0 . , 0 . , 0 .])

13t . l a b e l = ”Trans i t i on ”

14t . key = ”Trans i t i on ”

15t . r a t e = <rate>

16

17## crea t e a pre arc t ha t connects the p l ace and t r a n s i t i o n

18a = spu tn i k p e t r i n e t . Arc ()

19a . l i n e t y p e = spu tn i k p e t r i n e t . Arc .LINE TYPE STRAIGHT

20a . l a b e l = s t r (”StandardArc”)

21a . key = ”StandardArc”

22a . o r i g i n = p

23a . t a r g e t = t

24a . weight = <weight>

25

26## Other con s t ru c t o r s : TestArc () , Inh i b i t o ryArc ()

27## Other l i n e t ype s : LINE TYPE ARC UPPER, LINE TYPE ARC LOWER

28

29# in s t a n t i a t e a Petr iNet o b j e c t

30pn = spu tn i k p e t r i n e t . Petr iNet ()

19

31

32## add a l l the components

33pn . add place (p)

34pn . add t r an s i t i o n (t)

35pn . add arc (a)

36

37# update the PetriNetData o b j e c t

38pn . conve r t mat r i c e s ()

5.5 Petri net visualisation

5.5.1 Obtaining Petri net layout coordinates

Spectral algorithm

To obtain raw layout coordinates for a PetriNetData object p:

1import s p e c t r a l a

2

3v = sp e c t r a l a . Spe c t r a l ()

4v . p e t r i n e t = p

5v . g e t p e t r i n e t ()

6

7## OPTIONAL

8v . width = <width> ## Defau l t = 1000

9v . he ight = <height> ## Defau l t = 1000

10v . border = <border> ## Defau l t = 20

11v . d rad iu s = <d rad ius> ## Defau l t = 60

12

13coo rd ina t e s = v . c a l c u l a t e ()

The width, height, border and d radius variables have default values within the

spectral a class but can be overridden if the user desires.

Force-directed algorithm

For the force directed algorithm the process is the same other than the iterations variable

can also be optionally set:

20

1import f o r c e a

2

3v = f o r c e a . ForceDirected ()

4v . p e t r i n e t = p

5v . g e t p e t r i n e t ()

6

7## OPTIONAL

8v . width = <width> ## Defau l t = 1000

9v . he ight = <height> ## Defau l t = 1000

10v . border = <border> ## Defau l t = 20

11v . i t e r a t i o n s = < i t e r a t i o n s> ## Defau l t = 50

12

13coo rd ina t e s = v . c a l c u l a t e ()

The number of iterations required to reach an acceptable layout varies between graphs. For

small graphs (on the order of tens of vertices) 100 iterations may be su�cient, for graphs

containing hundreds of vertices a thousand or more iterations may be required. Some trial

and error may be required.

5.5.2 Drawing a Petri net

It is possible to draw a Petri net without using the GUI.

To perform these actions as part of a script for a PetriNet object pn:

1import s p e c t r a l a

2

3v = sp e c t r a l a . Spe c t r a l ()

4v . p e t r i n e t = pn . p e t r i n e t d a t a

5v . g e t p e t r i n e t ()

6

7## OPTIONAL

8v . width = <width> ## Defau l t = 1000

9v . he ight = <height> ## Defau l t = 1000

10v . border = <border> ## Defau l t = 20

11v . d rad iu s = <d rad ius> ## Defau l t = 60

12

13v . c a l c u l a t e ()

14## se t the p o s i t i o n s and draw the Pe t r i net

21

15pn . s e t p o s i t i o n s (v . node po s i t i on s)

5.5.3 Drawing an undirected graph

To draw a graph which is not a Petri net, the graph’s Adjacencymatrix must be available.

1import numpy as np

2import s p e c t r a l a

3

4v = sp e c t r a l a . Spe c t r a l ()

5

6## OPTIONAL

7v . width = <width> ## Defau l t = 1000

8v . he ight = <height> ## Defau l t = 1000

9v . border = <border> ## Defau l t = 20

10

11## In t h i s con t e x t p l a c e s r e f e r s to a unique i d e n t i f i e r f o r each

v e r t e x in the graph

12v . p l a c e s = np . array ([’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’])

13

14## The adjacency matrix i s ordered as the p l a c e s array :

15## a b c d e

16v . adjacency = np . matrix ([[0 , 0 , 1 , 1 , 0] , #a

17[0 , 0 , 0 , 1 , 1] , #b

18[1 , 0 , 0 , 0 , 0] , #c

19[1 , 1 , 0 , 0 , 0] , #d

20[0 , 1 , 0 , 0 , 0]]) #e

21v . render graph ()

5.5.4 Save an image of the visualisation

To save an image of a petri net visualisation, a gtk.DrawingArea object needs to be instan-

tiated which is used to represent the visualisation of the graph. The gtk.GraphicsContext,

which is bound to the drawing area, is assigned to the petri net via the PetriNet.draw(ctx)

method and the petri net components will be drawn onto the drawing area. The drawing

area can then be assigned to an instantiation of ExportDrawingArea. Finally, an export

22

method can be called to save an image of the drawing area. Here is code for an example class

to carry out these functions:

1class Export :

2”””

3Simple example c l a s s o f how the v i s u a l i s a t i o n o f the graph can be

expor ted to a de f ined l o c a t i on .

4”””

5def i n i t (s e l f , pn) :

6”””

7Constructor o f the sample Export c l a s s t ha t d e f i n e s the ba s i c

s e t t i n g s f o r a g t k .Window .

8”””

9## se t p e t r i net

10s e l f . pn = pn ## pn i s a Petr iNet o b j e c t

11## in s t a n t i a t e a g t k .Window

12window = gtk .Window()

13## in s t a n t i a t e a g t k . DrawingArea

14s e l f . d rawing area = gtk . DrawingArea ()

15s e l f . d rawing area . s i z e (900 , 600)

16## embed the drawing area in to a v iewpor t

17viewport = gtk . Viewport ()

18viewport . connect (” expose�event ” , s e l f . update drawing area)

19viewport . add (s e l f . d rawing area)

20## embed the v iewpor t in to the window

21window . add (viewport)

22window . show a l l ()

23window . show ()

24

25def update drawing area (s e l f , widget , event) :

26”””

27Update the drawing area in case o f an expose event .

28”””

29ctx = s e l f . d rawing area . window . c a i r o c r e a t e ()

30s e l f . pn . draw (ctx)

31ctx . c l i p ()

32

33def export (s e l f) :

34”””

35Export the v i s u a l i s a t i o n o f the graph as a PDF to a de f ined

l o c a t i on .

36”””

37## choose a b so l u t e path

23

38f i l e c h o o s e r = gtk . F i l eChooserDia log (”Export F i l e ” , None , gtk .

FILE CHOOSER ACTION SAVE, (gtk .STOCK CANCEL, gtk .

RESPONSE CANCEL, gtk .STOCKOK, gtk .RESPONSE OK))

39i f f i l e c h o o s e r . run () == gtk .RESPONSE OK:

40path = f i l e c h o o s e r . g e t f i l e name ()

41## expor t graph as pdf

42exp = drawing area expor t . DrawingAreaExport ()

43exp . drawing area = s e l f . d rawing area

44exp . path = path

45exp . expo r t a s pd f ()

5.6 Calculating the invariants

The P - and T -invariants of a net are calculated by a sputnik petrinet.PTInvariants()

object associated with a sputnik petrinet.PetriNetData() object. The invariants can

then be accessed via the p invariants and t invariants instance variables of this object.

To calculate and display the invariants of a PetriNetData() object, p, issue the following

commands:

1import s pu tn i k p e t r i n e t

2

3i = spu tn i k p e t r i n e t . PTInvariants ()

4i . s e t p e t r i n e t (p)

5i . c a l c u l a t e p i n v a r i a n t s ()

6i . c a l c u l a t e t i n v a r i a n t s ()

7

8print i . p i n va r i an t s

9print i . t i n v a r i a n t s

5.7 Running a simulation

Sputnik can simulate Petri nets using either an exact stochastic simulation algorithm (SSA),

the Gillespie, or an approximate SSA, the tau leap. Exact SSAs sample the waiting time

to each new reaction explicitly, using exact reaction hazards. Approximate SSAs use ap-

proximate hazards, sacrificing some accuracy for a shorter runtime. The Gillespie SSA can

handle test arcs, inhibitory arcs and capacities, and is the recommended algorithm for most

situations (it must be used if knowing the time of occurrence of each and every event is

24

desired). The tau leap SSA may be used when the model to be simulated involves large

species abundances. Under these conditions, the tau leap o↵ers significant speed advantages

over the Gillespie, while still providing a very accurate simulation. The tau leap cannot be

used with test arcs, inhibitory arcs or capacities.

sputnik simulation.Gillespie() and sputnik simulation.TauLeap() are subclasses of

sputnik simulation.Algorithm(), an abstract base class providing the general instance

variables algorithm, num runs, num iterations, run time and time step, plus the general

interface method run simulation(). When a simulation algorithm subclass is instantiated,

algorithm is automatically set to the correct algorithm type and num runs is initialized as

the default value 1. The simulation may be run for a specified num iterations or until a

certain time t is reached, with output data being stored at regular timepoints. In the latter

case, both run time and time step should be set.

Each simulation run initialises an object from the appropriate sputnik simulation.SimData()

subclass, namely sputnik simulation.GillespieData() or sputnik simulation.TauLeapData().

Five types of output data are stored in this class:

• times: a 1D NumPy array of timepoints of length n

• markings: a 2D NumPy array (n ⇥ P) of net markings at each timepoint

• events: usually a 2D NumPy array ((n � 1) ⇥ P) of event firing frequencies between

each timepoint. For a Gillespie simulation run by iteration, this is a 1D array where

each entry gives the index of the event that fired that iteration.

• event freqs: a list (length T) giving the total frequency with which each transition

fired

• iterations: the number of iterations simulated

Each SimData() object is appended to a list, which is set as the simulation data instance

variable of the Gillespie() or TauLeap() object.

5.7.1 Running the Gillespie SSA

1## I n i t i a l i s e a s imu la t i on o b j e c t

2import spu tn i k s imu la t i on

3g = sputn i k s imu la t i on . G i l l e s p i e ()

25

4g . p e t r i n e t = p ## p i s a PetriNetData o b j e c t

5

6## OPTIONAL s e t the number o f runs i f mu l t i p l e runs are de s i r ed

7g . num runs = <num runs>

8

9## EITHER choose a number o f i t e r a t i o n s

10g . num i t e ra t i on s = <num iterat ions>

11

12## OR se t a run time and time s t ep

13g . run t ime = <run time>

14g . t ime s t ep = <t ime step>

15

16## Run the s imu la t i on

17g . run s imu la t i on ()

18output = g . s imu la t i on data

19

20## You may p r i n t the raw data f o r a p a r t i c u l a r run (uses zero

index ing)

21print output [<run >] . t imes

22print output [<run >] . markings

23print output [<run >] . events

24print output [<run >] . e v e n t f r e q s

25print output [<run >] . i t e r a t i o n s

5.7.2 Running the tau leap SSA

There are three additional parameters for the tau leap algorithm compared to the Gillespie.

The default values will be suitable in most circumstances. For a full explanation of the

algorithm and its parameters, consult Cao et al. (2006) [10].

1. epsilon (default = 0.03; sensible range = 0-0.1) is a value between 0 and 1 that

adjusts the stringency of the algorithm, ✏. The smaller the value of ✏, the smaller the

calculated values of ⌧ , since ✏ is the maximum permitted relative change in any reaction

hazard each timestep.

2. control parameter (default = 10; sensible range = 2-20) determines the threshold

place marking that will cause the Gillespie algorithm to be invoked.

26

3. num ssa runs (default = 100) determines how many iterations of the Gillespie algorithm

should be run each time the marking of a place drops below the control parameter value.

1## I n i t i a l i s e a s imu la t i on o b j e c t

2import spu tn i k s imu la t i on

3t = sputn i k s imu la t i on . TauLeap ()

4t . p e t r i n e t = p ## p i s a PetriNetData o b j e c t

5

6## OPTIONAL s e t the number o f runs i f mu l t i p l e runs are de s i r ed

7t . num runs = <num runs>

8

9## EITHER choose a number o f i t e r a t i o n s

10t . num i t e ra t i on s = <num iterat ions>

11

12## OR se t a run time and time s t ep

13t . run t ime = <run time>

14t . t ime s t ep = <t ime step>

15

16## OPTIONAL change the s imu la t i on parameters from d e f a u l t

17t . e p s i l o n = <ep s i l on>

18t . cont ro l paramete r = <contro l parameter>

19t . num ssa runs = <num ssa runs>

20

21## Run the s imu la t i on

22t . run s imu la t i on ()

23output = t . s imu la t i on data

24

25## You may p r i n t the raw data f o r a p a r t i c u l a r run (uses zero

index ing)

26print output [<run >] . t imes

27print output [<run >] . markings

28print output [<run >] . events

29print output [<run >] . e v e n t f r e q s

30print output [<run >] . i t e r a t i o n s

27

5.8 Plotting simulation diagrams

The three classes Trajectory, Diagram and DiagramVisualisation are needed to cre-

ate a flexible representation of simulation results. A Trajectory object is used to de-

fine a single trajectory (place timecourse) and its properties; a Diagram object combines

multiple Trajectory objects and defines properties of a diagram or subplot and finally

DiagramVisualisation is used to define the actual representation of the defined Diagram

objects. The following script is for visualising an Algorithm subclass object sim of a

PetriNetData object p.

1import ma t p l o t l i b v i s u a l i s a t i o n

2

3# crea t e a PetriNetData o b j e c t p and s imu la t e i t to g e t sim

4. . .

5

6# in s t a n t i a t e a genera l o b j e c t t h a t i n c l u d e s the s i n g l e diagrams

7v i s = ma t p l o t l i b v i s u a l i s a t i o n . DiagramVisua l i sa t ion ()

8# se t p r o p e r t i e s

9v i s . t i t l e = <t i t l e >

10v i s . l e g e n d v i s i b i l i t y = True

11v i s . t i t l e v i s i b i l i t y = True

12v i s . subp lo t s = True

13v i s . l i n e w id th = < l i n e width> ## Defau l t = 1

14

15# i t e r a t e through a l l s imu la t i on runs

16for i in range(<num sims>) :

17# in s t a n t i a t e an o b j e c t t h a t combines s i n g l e t r a j e c t o r i e s

18d obj = ma t p l o t l i b v i s u a l i s a t i o n . Diagram ()

19# se t p r o p e r t i e s

20d obj . t i t l e = ” Simulat ion ” + s t r (i + 1)

21d obj . x l ab e l = ”Runtime”

22d obj . y l ab e l = ”Markings”

23d obj . l e g e nd po s i t i o n = 0

24d obj . t i t l e v i s i b i l i t y = True

25d obj . l e g e n d v i s i b i l i t y = True

26# i t e r a t i o n through a l l t r a j e c t o r i e s

27for j in range (l en (p . p l a c e s)) :

28# in s t a n t i a t e a t r a j e c t o r y o b j e c t

28

29t ob j = ma t p l o t l i b v i s u a l i s a t i o n . Tra j ec tory ()

30# se t p r o p e r t i e s

31t ob j . l e g end t ex t = p . p l a c e s [j] + ” � ” + d obj . t i t l e

32t ob j . a u t o c o l o r a l l o c a t i o n = True

33t ob j . x data = sim . s imu la t i on data [i] . t imes

34t ob j . y data = sim . s imu la t i on data [i] . markings [: , j])

35# add t r a j e c t o r y o b j e c t to the diagram ob j e c t

36d obj . add (t ob j , t o b j . l e g end t ex t)

37# add diagram ob j e c t to the v i s u a l i s a t i o n o b j e c t

38v i s . add (d obj , d obj . t i t l e)

39# v i s u a l i s e diagrams

40v i s . p l o t ()

29

6. Examples

In the following sections, three example systems are analysed using the Sputnik framework.

Example 1 is run via the graphical user interface while Example 2 is demonstrated through

a command-line terminal. Example 3 is a demonstration of adjusting the graph layout

parameters.

6.1 Example 1 : Repressilator

The repressilator is a synthetic biochemical network designed for Escherichia coli. The system

acts as a cellular clock, exhibiting regular oscillatory behaviour involving three protein-coding

genes [13]. Figure 6.1 shows a Petri net representing this network.

Figure 6.1: The Repressilator genetic system.

30

The program is supplied with the following example file which represents the above Petri

net:

Repressilator text file

places= [gA, pA, gA_off, gB, pB, gB_off, gC, pC, gC_off]

t = [gA_expression, pA_degradation, pA_inhib_gB, gB_reactivate,
 gB_expression, pB_degradation, pB_inhib_gC, gC_reactivate,
 gC_expression, pC_degradation, pC_inhib_gA, gA_reactivate]

pre arcs= [[1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 1, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0]]

post_arcs =[[1, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0]]

rates = [0.1, 0.001, 1, 0.0001, 0.1, 0.001,
 1, 0.0001, 0.1, 0.001, 1, 0.0001]

marking = [1, 0, 0, 1, 0, 0, 1, 0, 0]

Figure 6.2: A plain text file which specifies the repressilator Petri net model.

To load this input file from the GUI, select open file , then locate and open repressilator.txt,

included in the Sputnik package in the examples/ directory.

The Petri net will now be displayed. To calculate P - and T -invariants, select the invariants

icon . The following results window will then appear:

31

Figure 6.3: Calculated T - and P -invariants.

The Petri net can now be simulated using the Gillespie alogrithm. To do this, click the

simulation icon , you will then be presented with the simulation configuration options:

Figure 6.4: Configuration options for simulating the firing of a Petri net.

32

In this example, the runtime has been set to 300,000 and the Step-Size to 500. The Petri

net can now be simulated by clicking Start Simulation. An info box will inform the user

when the simulation is complete. Before plotting the results, a number of parameters can

be adjusted: For the example shown below (Figure 6.6), the Title was changed and Show

Legend was deselected, additionally some of the line colors were set manually, using the

Specific Plot-Options; to save these changes, click Save Specific Plot Setting, then

to visualise the plot, click Show Plot.

Figure 6.5: Graph output of stochastic simulation results for the repressilator
Petri net model. The y-axis denotes place markings and the x-axis shows the
runtime. The red, green and blue lines represent the three proteins in the
repressilator model.

This graph can then be exported to numerous image formats, including pdf, svg and png.

33

6.2 Example 2 : Four-reaction system

A second example system, the four-reaction system [17], will now be entered and simulated

using a command-line interface. These commands can be run using iPython or as part of a

Python script.

Figure 6.6: A Petri net representing the four-reaction system.

The first step required is to import specific modules of the Sputnik framework. In this ex-

ample we will be using the tau-leap simulation method, due to the large number of molecules

involved in this system. The required imports are:

1import s pu tn i k p e t r i n e t

2import pe t r i n e t da t a s imu l a t i on

Other imports, required for plotting and data entry, are:

1import matp lo t l i b . pyplot as p l t

2import numpy as np

The Petri net can now be specified using the following statements (Note the large initial

marking used in this example):

1p = spu tn i k p e t r i n e t . PetriNetData ()

2p . p l a c e s = np . array ([’ S1 ’ , ’ S2 ’ , ’ S3 ’])

3p . t r a n s i t i o n s = np . array ([’R1 ’ , ’R2 ’ , ’R3 ’ , ’R4 ’])

4p . r a t e s = np . array ([1 , 0 . 002 , 0 . 5 , 0 . 0 4] , dtype=f l o a t)

5p . i n i t i a l ma r k i n g = np . array ([1 0 0000 , 0 , 0] , dtype=in t)

Pre and post arcs are stored in a seperate stoichiometry class:

1s = spu tn i k p e t r i n e t . S to i ch ()

2s . p r e a r c s = np . matrix ([[1 , 0 , 0] , [2 , 0 , 0] , [0 , 1 , 0] , [0 , 1 , 0]] ,

dtype=in t)

3s . p o s t a r c s = np . matrix ([[0 , 0 , 0] , [0 , 1 , 0] , [2 , 0 , 0] , [0 , 0 , 1]] ,

dtype=in t)

4s . c a l c u l a t e s t o i c h i ome t r y ma t r i x ()

5s . ca l cu la t e dependency matr ix ()

34

In preparation for Tau leap simulation, the following extra procedures need to be called:

1s . ca l cu late consumed ()

2s . c a l c u l a t e s p e c i e s h o r s ()

In order to run the simulation three parameters are required, petri net, run time and

time step, which can each be set as follows:

1t = sputn ik s imu la t i on . TauLeap ()

2t . p e t r i n e t = p

3t . run t ime = 40

4t . t ime s t ep = 0.01

Now you are ready to run the simulation and visualise the output:

1t . run s imu la t i on ()

2r e s u l t s = t . s imu la t i on data

3p l t . p l o t (r e s u l t s [0] . t imes , r e s u l t s [0] . markings)

4p l t . show ()

Figure 6.7: The results of Tau-leap simulation of the four-reaction system.
The x-axis represents runtime and the y-axis shows place markings. Coloured
lines are represent places as follows: blue: S1, green: S2, red: S3.

NOTE: for a more sophisticated way to plot diagrams, see section 5.8.

35

6.3 Example 3 : MAP kinase

The library contains two powerful layout algorithms to help the user make sense of Petri

nets imported into the program. There are parameters within these algorithms that can

be optimised for a given scenario, be it the requirements of a specific graph, or particular

drawing area size. To demonstrate how these parameters a↵ect the graph layout process,

the MAP kinase model [18] will be used, due to its high layout di�culty as a result of its non

planar characteristic and high connectivity.

When a new Petri net is loaded to the program it is automatically laid out using the spectral

algorithm with default settings. An example of the MAP kinase system under default layout

conditions is shown in Figure 6.8.

Figure 6.8: The default layout of the MAP kinase system shown here is not
ideal, there is some clustering of objects and this has caused some of the object
labels to overlap.

By decreasing the border size to provide more space for the layout of objects and increasing

the size of the displacement radius to detect more clusters, you can generate a nicer auto-

matic layout. The result of refining the layout parameters for the MAP kinase Petri net is

shown in figure 6.9.

36

Figure 6.9: The refined layout of the MAP kinase system shown here has solved
some of the problems that are present in Figure 6.8 such as clustering of objects
and the overlap of labels.

To further improve the layout, you can drag objects to the desired location, save the coordi-

nates and lock the Petri net in place shown in Figure 6.10.

Figure 6.10: Manually-refined layout. The object highlighted in blue is the object
currently being moved by the user.

37

7. Extending the library

Sputnik was planned and designed using the object oriented paradigm (Figure 7.1). The

PetriNet class is the heart of the framework, used to encapsulate all the other components

from each other. This means that these individual components may be extended seperately,

without worrying about how the rest of the program will be a↵ected, so long as the interaction

with the central PetriNet class remains the same. In the rest of this section, advice is o↵ered

on how to extend aspects of the library.

7.1 Extending the GUI

Sputnik uses the Model-View-Controller (MVC) architecture, which allows the integration

of new components into the GUI without major changes to the whole system [19]. It consists

of three main components: model, view and controller [19,20]. V iews form visual aspects of

the GUI and controllers manage user interactions with views. Each view and controller

is registered with a model. In Sputnik, there is only one model, and it manages all the

interactions between the views and controllers. The views and controllers are observers of

the model. If there is a data change in a view or controller object, that object notifies

the model of the change, and the model in turn notifies its observers of the same changes,

synchronising the current state of the program. Figure 7.2 shows an overview of the MVC

architecture.

38

Figure 7.1: Simplified class diagram illustrating the overall architecture of Sputnik.
Key: group of classes, module name, other class names.

Figure 7.2: A general overview of the MVC architecture [19]. Views inherit from a general
View class, which itself inherits from the MVCObserver class. A controller handles user
interactions with the view. Both views and controllers are registered at their model, which
inherits from MVCObservable. The model carries out the notification protocol, which informs
its registered observers of data changes.

39

The main reasons for choosing the MVC architecture were its extensibility, flexibility and

re-usabilty [20]. Another important factor was its integrated notification protocol, which is

used to synchronise the views and controllers during runtime. Extensions to the GUI should

abide by MVC practices. The following code presents a sample extension with a new view

and controller:

1import gtk
2import pygtk
3

4import spu tn ik gu i
5

6class ViewExtension (spu tn i k gu i . View) :
7

8def i n i t (s e l f) :
9## c a l l cons t ruc to r o f parent c l a s s

10spu tn ik gu i . View . i n i t (s e l f)
11

12def i n i t (s e l f , model = None , c o n t r o l l e r = None) :
13## c a l l cons t ruc to r o f parent c l a s s

14spu tn ik gu i . View . i n i t (s e l f , model , c o n t r o l l e r)
15

16## common methods which are used f o r d i s p l a y i n g and n o t i f i c a t i o n

purposes

17def show (s e l f) :
18pass

19def update component (s e l f , key) :
20pass

21def update output (s e l f) :
22pass

23def undo (s e l f) :
24pass

25def update (s e l f) :
26pass

27def r e s e t (s e l f) :
28pass

29

30

31class Cont ro l l e rExtens i on (spu tn i k gu i . Con t r o l l e r) :
32

33def i n i t (s e l f) :
34## c a l l cons t ruc to r o f parent c l a s s

35spu tn ik gu i . Con t r o l l e r . i n i t (s e l f)
36

37def i n i t (s e l f , model = None , view = None) :
38## c a l l cons t ruc to r o f parent c l a s s

39spu tn ik gu i . Con t r o l l e r . i n i t (s e l f , model , view)
40

41## common methods which are used f o r d i s p l a y i n g and n o t i f i c a t i o n

purposes

42def show (s e l f) :
43pass

44def update component (s e l f , key) :
45pass

46def update output (s e l f) :
47pass

48def undo (s e l f) :
49pass

50def update (s e l f) :
51pass

52def r e s e t (s e l f) :
53pass

40

7.2 Adding additional language support

It is simple to extend the range of file formats accepted by Sputnik. To do this, a single

lexing class should be added (which could optionally be based on any of the existing classes

RLexerTxt, RLexerSBML or RLexerPNML). The only requirement of a novel lexing class is that

it returns a list of token objects, defined in the Token class, so that they can be correctly

parsed through RParser. Accepted components of a token list are detailed below (Table 7.1).

It is also possible to instantiate a PetriNetData object directly, bypassing tokenisation and

parsing; this method will, however, also avoid existing error-handling and input constraints

so should be used with caution.

Token.label Token.value

’p’ np.array of place names
’t’ np.array of transition names
’r’ np.array of rate constants
’m’ np.array of initial markings
’c’ np.array of capacities
’pre’ np.matrix for pre
’post’ np.matrix for post
’test’ np.matrix for test arcs
’inhib’ np.matrix for inhibitory arcs

Table 7.1: All possible components of a Token list. np refers to the numpy
module.

Existing error checking methods can be invoked on any newly-defined lexer class by inheriting

from class RLexer and calling the function self.check(), passing the completed token list as

an argument. Alternatively, in-built error checking can be avoided by omitting this function

call.

A new lexing class could be incorporated into the GUI frontend by editing the controller main.py

file. First, the new module should be imported in the file header. Then the open file func-

tion should be edited to initialise the new lexer upon the opening of a file with the required

extension. For example:

1i f ’ . y o u r f i l e e x t e n s i o n ’ in f . name :

2l e x e r = newModule . newLexerClass ()

In order to save to a novel format, a converter class can be written which extracts data from

a PetriNetData object and writes to a file format of choice. This functionality can then be

added to the GUI as above, but instead editing the open file function.

41

7.3 Adding additional simulation algorithms

To add an additional simuluation algorithm, simpy create a new subclass of the abstract base

class Algorithm. This new class should contain a method that runs the simulation, and a

class variable, algorithm, whose value is the same as the name of the simulation method.

The simulation method should return data in a format consistent with that of the existing

algorithms, and store it in a new subclass of the abstract base class SimData.

42

References

[1] CA Petri. Kommunikation mit automaten. Bonn: Institut fur Instrumentelle Mathe-

matik, Schriften des IIM, 3, 1962.

[2] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer-Verlag

Berlin, 2005.

[3] M. A. Marsan. Stochastic petri nets: An elementary introduction. In In Advances in

Petri Nets, pages 1–29. Springer, 1989.

[4] D. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall / CRC

Mathematical & Computational Biology, 2006.

[5] J. W. Pinney, D. R. Westhead, and G. A. McConkey. Petri net representations in systems

biology. Biochemical Society Transactions, 31:1513–1515, 2003.

[6] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling and analysing

biochemical pathways using petri nets. Technical report, Brandenburg University of

Technology at Cottbus, 2007.

[7] P.J.E. Goss and J. Peccoud. Quantitative modeling of stochastic systems in molecular

biology by using stochastic petri nets. Proceedings of the National Academy of Sciences

of the United States of America, 1998.

[8] T. Toni. Approximate Bayesian computation for parameter inference and model selection

in systems biology. PhD thesis, Imperial College London, 2010.

[9] D. T. Gillespie. Exact stochastic simulation of coupled checmical reactions. Journal of

Physical Chemistry, 81(25):2340–2361, December 1977.

[10] Y. Cao, D. T. Gillespie, and L. R. Petzold. E�cient step size selection for the tau-leaping

simulation method. J Chem Phys, 124(4):044109, Jan 2006.

43

[11] A. Finney and M. Hucka. Systems biology markup language: Level 2 and beyond.

Biochem Soc Trans, 31(Pt 6):1472–1473, Dec 2003.

[12] Pnml.org. Pnml grammar, version 2009, 2009.

[13] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regula-

tors. Nature, 403:335–338, 2000.

[14] Creative Commons Attribution-ShareAlike 3.0 Unported Licence.

http://creativecommons.org/licenses/by-sa/3.0/.

[15] Open Source Icons. http://openiconlibrary.sourceforge.net/.

[16] PyDoc Python v2.7.2 Documentation. http://docs.python.org/library/pydoc.html.

[17] T. Tian and B. Burrage. Binomial leap methods for simulating stochastic chemical

kinetics. Journal of Chemical Physics, 121:10356–10364, 2004.

[18] T Toni, Y Ozaki, P Kirk, S Kuroda, and MPH Stumpf. Elucidating phosphorylation

dynamics of the erk map kinase (in preparation).

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern - Orien-

tierte Software Architektur: Ein Pattern - System. Addison-Wesley, 1998.

[20] E. Gamma E and J. Vlissides R. Helm, R. Johnson. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison - Wesley, 1 edition, 1994.

44

	Installation
	Quick start
	Introduction
	Using the library: GUI
	Basic functions
	Simulation

	Using the library: command-line
	Help documentation
	Import and export of Petri nets
	Manually inputting a Petri net
	Create a PetriNet object
	Petri net visualisation
	Calculating the invariants
	Running a simulation
	Plotting simulation diagrams

	Examples
	Example 1 : Repressilator
	Example 2 : Four-reaction system
	Example 3 : MAP kinase

	Extending the library
	Extending the GUI
	Adding additional language support
	Adding additional simulation algorithms

	References

