-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_arc.py
212 lines (180 loc) · 8.51 KB
/
test_arc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/python
import copy
import pygtk
import gtk
import cairo
import math
import place
import transition
import arc
import standard_arrow_head
from math import pi
from math import atan2
from math import atan
from math import cos
from math import sin
from math import tan
class TestArc(arc.Arc):
_head = standard_arrow_head.StandardArrowHead()
def __init__(self):
super(TestArc, self).__init__()
def get_positions(self):
""" Calculate the true start- and end-position of the line according to the defined origin and target component. """
# initial positions
pos_origin = [0, 0]
pos_target = [0, 0]
try:
alpha = 0
x_q = 0
y_q = 0
if self._target != None:
# calculate angle between the two components
alpha = atan2(self._target.position[1] - self._origin.position[1], self._target.position[0] - self._origin.position[0])
# calculate position of the control point
x_q, y_q = self.calculate_control_point(self._origin.position, self._target.position, 75, 75)
else:
alpha = atan2(self._target_position[1] - self._origin.position[1], self._target_position[0] - self._origin.position[0])
# check if the origin component is a place
if type(self._origin) == place.Place:
# check the line type of the arc
if self._line_type == self.LINE_TYPE_ARC_LOWER or self._line_type == self.LINE_TYPE_ARC_UPPER:
# calculate start-position of the place (on the circle)
pos_origin = self.get_position_place(self._origin, [x_q, y_q], alpha, True, False)
else:
# calculate start-position of the place (on the circle)
pos_origin = self.get_position_place(self._origin, None, alpha, True, True)
if self._target != None:
# calculate end-position of the transition
pos_target = self.get_position_transition(self._target, self._origin.position, alpha, False)
else:
pos_target = self._target_position
else:
if self._target != None:
# check the line type of the arc
if self._line_type == self.LINE_TYPE_ARC_LOWER or self._line_type == self.LINE_TYPE_ARC_UPPER:
# calculate end-position of the place (on the circle)
pos_target = self.get_position_place(self._target, [x_q, y_q], alpha, False, False)
else:
# calculate end-position of the place (on the circle)
pos_target = self.get_position_place(self._target, None, alpha, False, True)
# calculate start-position of the transition
pos_origin = self.get_position_transition(self._origin, self._target.position, alpha, True)
else:
pos_target = self._target_position
# calculate start-position of the transition
pos_origin = self.get_position_transition(self._origin, self._target_position, alpha, True)
except IndexError:
pos_origin = [0, 0]
pos_target = [0, 0]
# return true positions
return (pos_origin, pos_target)
def get_position_transition(self, component, position, alpha, is_origin):
""" Calculate the true position on a transition for a connection with an arc. The component defines the type and delivers the needed information about the place, position defines the position of the other component, alpha is the angle between the two components and is_origin is TRUE if the transition is the origin of the arc. """
# initial position
pos = [0, 0]
# check the if the component is really a transition
if type(component) == transition.Transition:
# calculate the distance between the possible connection points
dx = int(component.dimension[0] / 2)
dy = 0
d = component.dimension[1] / 9
# determine the type of connection and determine the y-offset
if self._target != None:
if self._target.is_equal(component):
dy = -4*d
else:
dy = -3*d
# check if a position is defined
if position != None:
if position[0] < component.position[0]:
dx *= -1
dy *= -1
# determine the true position where the arc needs to be connected to
pos = [component.position[0] + dx, component.position[1] + dy]
# return the true position where the arc should be connected to
return pos
def clone(self):
""" Duplication of the current place and the duplicate will be returned. """
# duplicate
comp = TestArc()
# general arc/component specific properties
comp.key = self.key
comp.label = self.label
comp.description = self.description
comp.x_offset = self.x_offset
comp.y_offset = self.y_offset
comp.font_label = self.font_label.clone()
comp.font_description = self.font_description.clone()
comp.position = copy.deepcopy(self.position)
comp.rgb_edge = copy.deepcopy(self.rgb_edge)
comp.rgb_fill = copy.deepcopy(self.rgb_fill)
comp.count_inputs = self.count_inputs
comp.count_outputs = self.count_outputs
comp.line_type = self.line_type
comp.weight = self.weight
comp.origin = self.origin.clone()
comp.target = self.target.clone()
# return duplicate
return comp
def _draw_arrow(self, ctx, pos_from, pos_to):
""" Draw the arrow onto the surface referenced by the GraphicsContext from the start- to the end-position. """
# set the basic colour for the arc
ctx.set_source_rgb(*self._edge)
# set the properties for a transparent arc
r = 0
g = 0
b = 0
if self._edge[0] != 0:
r = 1
if self._edge[1] != 0:
g = 1
if self._edge[2] != 0:
b = 1
ctx.set_source_rgba(r, g, b, 0.60)
ctx.move_to(pos_from[0], pos_from[1])
# define dashed line
ctx.set_dash([5, 3],0)
# check if the arc should be a straight connection
if self._line_type == self.LINE_TYPE_STRAIGHT:
# trigonometric calculations to determine the start- and end-positions
angle = atan2(pos_to[1] - pos_from[1], pos_to[0] - pos_from[0])
ctx.line_to(pos_to[0], pos_to[1])
ctx.stroke()
# calculate position for the label of the arc
dx = int((pos_to[0] - pos_from[0]) / 2)
dy = int((pos_to[1] - pos_from[1]) / 2)
deg_angle = 180 * angle / pi
if (deg_angle <= -170 or deg_angle >= 170) or (deg_angle >= -10 and deg_angle <= 10):
dy -= 6
elif (deg_angle <= 100 and deg_angle >= 80) or (deg_angle <= -100 and deg_angle >= -80):
dx += 6
else:
dx += 6
dy += 6
# check if a label needs to be added
if self._weight != 1:
# add a label to the arc
self._add_text_no_adjustment(ctx, [pos_from[0] + dx, pos_from[1] + dy], self._font_label, str(int(self._weight)))
# check if the arc should be a curved connection
if self._line_type == self.LINE_TYPE_ARC_LOWER or self._line_type == self.LINE_TYPE_ARC_UPPER:
# calculate control point for the quadratic curve
x_q, y_q = self.calculate_control_point(pos_from, pos_to, 95, 95)
# calculate the angle between the end-position and the control point
angle = atan2(y_q - pos_to[1], x_q - pos_to[0]) + pi
# draw curve
ctx.curve_to(pos_from[0], pos_from[1], x_q, y_q, pos_to[0], pos_to[1])
ctx.stroke()
# check if a label needs to be added
if self._weight != 1:
# calculate label position for the quadratic curve
x_q, y_q = self.calculate_control_point(pos_from, pos_to, 55, 55)
self._add_text(ctx, [x_q, y_q], self._font_label, str(int(self._weight)))
# set a continuous line again
ctx.set_dash([1, 0], 0)
# set the properties for the standard arrow head
self._head.length = 10
self._head.angle = angle
self._head.position = pos_to
self._head.color = self._edge
self._head.draw(ctx)
ctx.stroke()