-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
230 lines (205 loc) · 9.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import logging
import torch
import numpy as np
import torchvision
import torch.nn.functional as F
from torch.distributions import Poisson
from torch.utils.tensorboard import SummaryWriter
import data
import models
import utils
def main(args):
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
utils.setup_experiment(args)
utils.init_logging(args)
# Build data loaders, a model and an optimizer
train_loader, valid_loader, test_loader = data.build_dataset(args.dataset, args.data_path,
batch_size=args.batch_size,
image_size=args.image_size,
contrast=args.contrast,
repeat_train=args.repeat_train,
rotation_aug = not args.no_rotation,
resize_aug = not args.no_resize,
generalization_exp = args.generalization_exp,
allowed_gen_values = args.allowed_gen_values)
model = models.build_model(args).to(device)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='max', factor=0.5, patience=3)
logging.info(
f"Built a model consisting of {sum(p.numel() for p in model.parameters()):,} parameters")
# Track moving average of loss values
train_meters = {name: utils.RunningAverageMeter(
0.98) for name in (["train_loss", "train_psnr"])}
valid_meters = {name: utils.AverageMeter() for name in (["valid_psnr"])}
writer = SummaryWriter(
log_dir=args.experiment_dir) if not args.no_visual else None
global_step = -1
for epoch in range(args.num_epochs):
train_bar = utils.ProgressBar(train_loader, epoch)
for meter in train_meters.values():
meter.reset()
for batch_id, sample in enumerate(train_bar):
model.train()
global_step += 1
clean = sample["image"].to(device)
clean = clean * args.noise_scale
noisy = Poisson(clean).sample()
denoised = model(noisy)
loss = F.mse_loss(denoised, clean, reduction="sum") / len(sample)
# loss = (-inputs * outputs.log() + outputs).mean()
# loss = (outputs * ((outputs + 1e-6).log() - (inputs + 1e-6).log()) - outputs).mean()
# loss = ((outputs - inputs) * outputs.log() - outputs * inputs.log()).mean()
model.zero_grad()
loss.backward()
optimizer.step()
train_psnr = utils.psnr(clean/args.noise_scale, denoised/args.noise_scale)
train_meters["train_loss"].update(loss.item())
train_meters["train_psnr"].update(train_psnr.item())
train_bar.log(
dict(
**train_meters,
lr=optimizer.param_groups[0]["lr"]),
verbose=True)
if writer is not None and global_step % args.log_interval == 0:
writer.add_scalar(
"lr", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("loss/train", loss.item(), global_step)
writer.add_scalar("psnr/train", train_psnr.item(), global_step)
gradients = torch.cat(
[p.grad.view(-1) for p in model.parameters() if p.grad is not None], dim=0)
writer.add_histogram("gradients", gradients, global_step)
# for idx in range(len(clean)):
# image = torch.stack([clean[idx], noisy[idx] / args.noise_scale, denoised[idx]], dim=0)
# image = torchvision.utils.make_grid(image.clamp(0, 1), nrow=3, normalize=False)
# writer.add_image(f"train_images/{sample['name'][idx]}", image, global_step)
if epoch % args.valid_interval == 0:
model.eval()
for meter in valid_meters.values():
meter.reset()
valid_bar = utils.ProgressBar(valid_loader)
sample_id_to_plot = np.random.choice(
np.arange(len(valid_loader)), 5, replace=True)
for sample_id, sample in enumerate(valid_bar):
with torch.no_grad():
clean = sample["image"].to(device)
# print(clean.shape)
clean = clean * args.noise_scale
noisy = noisy = Poisson(clean).sample()
denoised = model(noisy)
valid_psnr = utils.psnr(clean / args.noise_scale, denoised / args.noise_scale)
valid_meters["valid_psnr"].update(valid_psnr.item())
if sample_id in sample_id_to_plot:
for idx in range(min(len(clean), 3)):
image = torch.stack(
[clean[idx] / args.noise_scale, noisy[idx] / args.noise_scale, denoised[idx] / args.noise_scale], dim=0)
image = torchvision.utils.make_grid(
image.clamp(0, 1), nrow=3, normalize=False)
writer.add_image(
f"valid_images/{sample['name'][idx]}", image, global_step)
if writer is not None:
writer.add_scalar(
"psnr/valid",
valid_meters["valid_psnr"].avg,
global_step)
logging.info(
train_bar.print(
dict(
**train_meters,
**valid_meters,
lr=optimizer.param_groups[0]["lr"])))
utils.save_checkpoint(
args,
global_step,
model,
optimizer,
score=valid_meters["valid_psnr"].avg,
mode="max")
scheduler.step(valid_meters["valid_psnr"].avg)
logging.info(
f"Done training! Best PSNR {utils.save_checkpoint.best_score:.3f} obtained after step {utils.save_checkpoint.best_step}.")
def get_args():
parser = argparse.ArgumentParser(allow_abbrev=False)
# Add data arguments
parser.add_argument(
"--data-path",
default="dataset",
help="path to data directory")
parser.add_argument(
"--dataset",
default="ptceo2",
help="train dataset name")
parser.add_argument(
"--batch-size",
default=128,
type=int,
help="train batch size")
parser.add_argument(
"--image-size",
default=100,
type=int,
help="size of the patch")
parser.add_argument(
"--contrast",
default="white",
help="which contrasts to train on. white-black-intermediate")
parser.add_argument(
"--generalization-exp",
default="None",
help="which gen exp to run. structure-defect")
parser.add_argument(
"--allowed-gen-values",
default="None",
help="What are the allowed values. PtNp1-PtNp3")
parser.add_argument(
"--repeat-train",
default=1,
type=int,
help="number of times to repeat dataset obj")
parser.add_argument(
"--no-rotation",
action="store_true",
help="don't use rotation augmentation")
parser.add_argument(
"--no-resize",
action="store_true",
help="don't resize")
# Add model arguments
parser.add_argument("--model", default="dncnn", help="model architecture")
parser.add_argument(
"--noise-scale",
default=1,
type=int,
help="multiply the signal by this factor. equivalent to temporally summing frames")
# Add optimization arguments
parser.add_argument("--lr", default=1e-3, type=float, help="learning rate")
# parser.add_argument("--lr-step-size", default=30, type=int, help="step size for learning rate scheduler")
# parser.add_argument("--lr-gamma", default=0.1, type=float, help="learning rate multiplier")
parser.add_argument(
"--num-epochs",
default=200,
type=int,
help="force stop training at specified epoch")
parser.add_argument(
"--valid-interval",
default=1,
type=int,
help="evaluate every N epochs")
parser.add_argument(
"--save-interval",
default=1,
type=int,
help="save a checkpoint every N steps")
# Parse twice as model arguments are not known the first time
parser = utils.add_logging_arguments(parser)
args, _ = parser.parse_known_args()
models.MODEL_REGISTRY[args.model].add_args(parser)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
main(args)