-
Notifications
You must be signed in to change notification settings - Fork 2
/
effusion_detector.py
242 lines (206 loc) · 8.69 KB
/
effusion_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import cv2
import os
import glob
import numpy as np
import matplotlib.pyplot as plt
import warnings
import time
import argparse
import zipfile
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, BatchNormalization, Dropout
from tensorflow.keras import regularizers
from tensorflow.keras import optimizers
import random as rn
import tensorflow as tf
import keras as k
from sklearn.metrics import roc_auc_score
from tensorflow.keras.callbacks import *
from functools import partial
import tensorflow.keras.backend as K
from itertools import product
from keras import backend as kb
from azureml.core import Run
from tensorflow.keras.metrics import AUC
#############################
## python effusion_detector.py --data-folder '/tmp/data/data.zip'
#############################
rn.seed(30)
np.random.seed(30)
tf.compat.v1.random.set_random_seed(30)
print(tf.__version__)
warnings.simplefilter('ignore')
# There are two classes of images that we will deal with
disease_cls = ['effusion', 'nofinding']
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=10,
width_shift_range=0,
height_shift_range=0,
vertical_flip=False,)
# preprocess images for training and validation, for training transformations are applied randomly.
def preprocess_img(img, mode):
normalizedImg = np.zeros((256, 256))
resized_img = cv2.resize(img, (256,256))
normalized_img = cv2.normalize(resized_img, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)[:,:,np.newaxis]
if mode == 'train':
if np.random.randn() > 0:
kernel = np.ones((5,5),np.uint8)
opened = cv2.morphologyEx(normalized_img, cv2.MORPH_OPEN, kernel)[:,:,np.newaxis]
normalized_img = datagen.random_transform(opened)
return normalized_img
# creates and returns a cnn model
def prepare_model(img_rows, img_cols, img_channels, nb_classes):
cnn = Sequential()
cnn.add(Conv2D(32, (3, 3), padding='same', activation='relu', input_shape=(img_rows,img_cols,img_channels)))
cnn.add(MaxPooling2D(pool_size=(2, 2)))
cnn.add(Conv2D(64, (3, 3), padding='same', activation='relu',))
cnn.add(MaxPooling2D(pool_size=(2, 2)))
cnn.add(Conv2D(128, (3, 3), padding='same', activation='relu',))
cnn.add(MaxPooling2D(pool_size=(2, 2)))
cnn.add(Flatten())
cnn.add(Dense(512))
cnn.add(Dense(512))
cnn.add(Dense(nb_classes,activation='sigmoid'))
cnn.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy', AUC(name='auc')])
print(cnn.summary())
return cnn;
# this class ensures there is continuous stream of data to the model for training
class AugmentedDataGenerator(tf.keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, mode='train', ablation=None, disease_cls = ['nofinding', 'effusion'],
batch_size=15, dim=(256, 256), n_channels=1, shuffle=True):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = {}
self.list_IDs = []
self.mode = mode
for i, cls in enumerate(disease_cls):
print('navigating data path:',os.path.join(DATASET_PATH, cls, '*'))
paths = glob.glob(os.path.join(DATASET_PATH, cls, '*'))
brk_point = int(len(paths)*0.8)
if self.mode == 'train':
paths = paths[:brk_point]
else:
paths = paths[brk_point:]
if ablation is not None:
paths = paths[:int(len(paths)*ablation/100)]
self.list_IDs += paths
self.labels.update({p:i for p in paths})
self.n_channels = n_channels
self.n_classes = len(disease_cls)
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
list_IDs_temp = [self.list_IDs[k] for k in indexes]
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim, self.n_channels))
y = np.empty((self.batch_size), dtype=int)
delete_rows = []
# Generate data
for i, ID in enumerate(list_IDs_temp):
img = cv2.imread(ID, cv2.IMREAD_GRAYSCALE)
img = img[:, :, np.newaxis]
if img.shape[:3] == (1024, 1024,1):
img = preprocess_img(img, self.mode)
X[i,] = img
y[i] = self.labels[ID]
else:
delete_rows.append(i)
continue
X = np.delete(X, delete_rows, axis=0)
y = np.delete(y, delete_rows, axis=0)
return X, y
# calculates "validation auc" for every epoch
class roc_callback(Callback):
def on_train_begin(self, logs={}):
logs['val_auc'] = 0
def on_epoch_end(self, epoch, logs={}):
y_p = []
y_v = []
for i in range(len(validation_generator)):
x_val, y_val = validation_generator[i]
y_pred = self.model.predict(x_val)
y_p.append(y_pred)
y_v.append(y_val)
y_p = np.concatenate(y_p)
y_v = np.concatenate(y_v)
roc_auc = roc_auc_score(y_v, y_p)
print ('\nVal AUC for epoch{}: {}'.format(epoch, roc_auc))
logs['val_auc'] = roc_auc
run.log('Loss', logs['val_loss'])
run.log('Accuracy', logs['val_accuracy'])
run.log('AUC', logs['val_auc'])
# applys decaying learning rate for each epoch
class DecayLR(tf.keras.callbacks.Callback):
def __init__(self, base_lr=0.01, decay_epoch=1):
super(DecayLR, self).__init__()
self.base_lr = base_lr
self.decay_epoch = decay_epoch
self.lr_history = []
def on_train_begin(self, logs={}):
kb.set_value(self.model.optimizer.lr, self.base_lr)
def on_epoch_end(self, epoch, logs={}):
new_lr = self.base_lr * (0.5 ** (epoch // self.decay_epoch))
self.lr_history.append(kb.get_value(self.model.optimizer.lr))
kb.set_value(self.model.optimizer.lr, new_lr)
# extracting data
def prep_data(filename):
directory_to_extract_to = '/var/tmp/effusion/'
os.makedirs(directory_to_extract_to, exist_ok=True)
with zipfile.ZipFile(filename) as f:
print('Extracting files to...', directory_to_extract_to)
f.extractall(directory_to_extract_to)
return directory_to_extract_to + 'data/'
print("TensorFlow version:", tf.__version__)
# loading arguments from job definition
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', default='data', help='data folder mounting point')
parser.add_argument('--batch-size', type=int, dest='batch_size', default=32, help='mini batch size for training')
parser.add_argument('--epochs', type=int, dest='epochs', default=10, help='Number of Epochs')
args = parser.parse_args()
DATASET_PATH = prep_data(args.data_folder)
# few constants
n_inputs = 256 * 256
n_epochs = args.epochs
batch_size = args.batch_size
print('Data Folder', DATASET_PATH)
print('Batch Size', batch_size)
print('Epochs', n_epochs)
# Build neural network model.
neural_net = prepare_model(256, 256, 1, 1)
# start an Azure ML run
run = Run.get_context()
# start timer
start_time = time.perf_counter()
os.makedirs('./outputs/model', exist_ok=True)
filepath = './outputs/model/best_model.h5'
# initiating call backs
auc_logger = roc_callback()
decay = DecayLR()
checkpoint = ModelCheckpoint(filepath, monitor='val_auc', verbose=1, save_best_only=True, mode='max')
ES = tf.keras.callbacks.EarlyStopping(monitor='val_auc', patience=5, verbose=1, mode='max')
# create data streams
training_generator = AugmentedDataGenerator('train', ablation=None)
validation_generator = AugmentedDataGenerator('val', ablation=None)
history = neural_net.fit(training_generator, epochs=n_epochs, validation_data=validation_generator, verbose=2, callbacks=[auc_logger, ES, decay, checkpoint])
stop_time = time.perf_counter()
training_time = (stop_time - start_time) * 1000
print("Total time in milliseconds for training: {}".format(str(training_time)))