-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsrsChEqualizerUnittest.m
368 lines (311 loc) · 14.7 KB
/
srsChEqualizerUnittest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
%srsChEqualizerUnittest Unit tests for the channel equalizer.
% This class implements unit tests for the channel equalizer functions using
% the matlab.unittest framework. The simplest use consists in creating an object with
% testCase = srsChEqualizerUnittest
% and then running all the tests with
% testResults = testCase.run
%
% srsChEqualizerUnittest Properties (Constant):
%
% srsBlock - The tested block (i.e., 'channel_equalizer').
% srsBlockType - The type of the tested block, including layer
% (i.e., 'phy/upper/equalization').
%
% srsChEqualizerUnittest Properties (ClassSetupParameter):
%
% outputPath - Path to the folder where the test results are stored.
%
% srsChEqualizerUnittest Properties (TestParameter):
%
% channelSize - Channel dimensions, i.e., number of receive ports and
% transmit layers.
% eqType - Equalization algorithm, either MMSE or ZF.
%
% srsChEqualizerUnittest Methods:
%
% MSEsimulation - Computes the expected (nominal) and empirical SNR and
% MSE achieved by the channel equalizer.
%
% srsChEqualizerUnittest Methods (TestTags = {'testvector'}):
%
% testvectorGenerationCases - Generates a test vector according to the provided
% parameters.
%
% srsChEqualizerUnittest Methods (Access = protected):
%
% addTestIncludesToHeaderFile - Adds include directives to the test header file.
% addTestDefinitionToHeaderFile - Adds details (e.g., type/variable declarations)
% to the test header file.
%
% See also matlab.unittest.
% Copyright 2021-2024 Software Radio Systems Limited
%
% This file is part of srsRAN-matlab.
%
% srsRAN-matlab is free software: you can redistribute it and/or
% modify it under the terms of the BSD 2-Clause License.
%
% srsRAN-matlab is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% BSD 2-Clause License for more details.
%
% A copy of the BSD 2-Clause License can be found in the LICENSE
% file in the top-level directory of this distribution.
classdef srsChEqualizerUnittest < srsTest.srsBlockUnittest
properties (Constant)
%Name of the tested block.
srsBlock = 'channel_equalizer'
%Type of the tested block, including layers.
srsBlockType = 'phy/upper/equalization'
end
properties (ClassSetupParameter)
%Path to results folder (old 'channel_equalizer' tests will be erased).
outputPath = {['testChEqualizer', char(datetime('now', 'Format', 'yyyyMMdd''T''HHmmss'))]}
end
properties (TestParameter)
% Number of RE to equalize.
NumSymbols = {12, 123, 1000}
%Channel dimensions.
% The first entry is the number of receive antenna ports, the
% second entry is the number of transmit layers.
channelSize = {[1, 1], [2, 1], [4, 1], [2, 2], [4, 2], [4, 3], [4, 4]}
%Equalizer type.
% MMSE or ZF.
eqType = {'MMSE', 'ZF'}
% Amplitude scaling of the data symbols relative to the reference signals.
txScaling = {1, sqrt(2), 0.5}
end
properties (Hidden)
%Number of Resource Blocks.
nRB = 25
%Subcarrier Spacing in kHz.
scs = 15
%FFT size.
fftSize = 512
%SNR in dB of the reference signals used for channel estimation.
snr = 10
%Amplitude scaling of the data symbols relative to the reference signals.
beta = 1.2
%Channel tensor (subcarrier, OFDM symbols, Rx antennas, Tx layers).
channelTensor double
end % of properties (Hidden)
methods (Access = protected)
function addTestIncludesToHeaderFile(~, fileID)
%addTestIncludesToHeaderFile(OBJ, FILEID) adds include directives to
% the header file pointed by FILEID, which describes the test vectors.
fprintf(fileID, [...
'#include "srsran/adt/complex.h"\n' ...
'#include "srsran/support/file_vector.h"\n' ...
]);
end
function addTestDefinitionToHeaderFile(~, fileID)
%addTestDefinitionToHeaderFile(OBJ, FILEID) adds test details (e.g., type
% and variable declarations) to the header file pointed by FILEID, which
% describes the test vectors.
fprintf(fileID, [...
'struct context_t {\n' ...
' unsigned nof_re, nof_layers, nof_rx_ports;\n' ...
' float noise_var;\n' ...
' float scaling;\n' ...
' std::string equalizer_type;\n' ...
'};\n'...
'struct test_case_t {\n' ...
' context_t context;\n' ...
' file_vector<cf_t> equalized_symbols;\n' ...
' file_vector<float> equalized_noise_vars;\n' ...
' file_vector<cf_t> received_symbols;\n' ...
' file_vector<cf_t> ch_estimates;\n' ...
'};\n'...
]);
end
end % of methods (Access = protected)
methods (Test, TestTags = {'testvector'})
function testvectorGenerationCases(obj, NumSymbols, channelSize, eqType, txScaling)
%testvectorGenerationCases Generates a test vector for the given
% number of channel symbols, channel size, equalizer type and
% data-to-reference amplitude scaling.
import srsTest.helpers.approxbf16
import srsTest.helpers.writeComplexFloatFile
import srsTest.helpers.writeFloatFile
import srsLib.phy.upper.equalization.srsChannelEqualizer
% Generate a unique test ID by looking at the number of files
% generated so far.
testID = obj.generateTestID;
% Extract number of receive ports and transmit layers.
NumRxPorts = channelSize(1);
NumLayers = channelSize(2);
% Create random QPSK transmit symbols.
txSymbols = (randi([0, 1], NumSymbols, NumRxPorts) + ...
1j * randi([0, 1], NumSymbols, NumRxPorts));
txSymbols = (2 * txSymbols - (1 + 1j)) / sqrt(2);
% Create random estimated channel. The estimated channel
% magnitude is in the range (0.1, 1) and the phase in
% (0, 2 * pi).
chEsts = (0.1 + 0.9 * rand(NumSymbols, NumRxPorts, NumLayers)) .* ...
exp(2j * pi * rand(NumSymbols, NumRxPorts, NumLayers));
% Create random received symbols.
rxSymbols = complex(zeros(NumSymbols, NumRxPorts));
for nt = 1:NumLayers
for nr = 1:NumRxPorts
rxSymbols(:, nr) = rxSymbols(:, nr) + ...
txSymbols(:, nt) .* chEsts(:, nr, nt);
end
end
% Select a random noise variance between (0.5, 1.5).
noiseVar = 0.5 + rand();
% Generate and process the symbols.
[eqSymbols, eqNoiseVars] = srsChannelEqualizer(approxbf16(rxSymbols), ...
approxbf16(chEsts), eqType, noiseVar, txScaling);
% Revert layer mapping.
eqSymbols = nrLayerDemap(eqSymbols);
eqSymbols = eqSymbols{1};
eqNoiseVars = nrLayerDemap(eqNoiseVars);
eqNoiseVars = eqNoiseVars{1};
% Create cell with test case context.
testCaseContext = {...
NumSymbols, ... % nof_re
NumLayers, ... % nof_layers
NumRxPorts, ... % nof_rx_ports
noiseVar, ... % noise_var
txScaling, ... % scaling
['"' eqType '"'], ... % equalizer_type
};
% Write the equalized symbols to a binary file.
obj.saveDataFile('_test_output_eq_symbols', testID, @writeComplexFloatFile, approxbf16(eqSymbols(:)));
% Write the post-equalization noise variances to a binary file.
obj.saveDataFile('_test_output_eq_noise_vars', testID, @writeFloatFile, eqNoiseVars(:));
% Write the received symbols to a binary file.
obj.saveDataFile('_test_input_rx_symbols', testID, @writeComplexFloatFile, rxSymbols(:));
% Write the channel estimates to a binary file.
obj.saveDataFile('_test_input_ch_estimates', testID, @writeComplexFloatFile, chEsts(:));
% Generate the test case entry.
testCaseString = obj.testCaseToString(testID, ...
testCaseContext, true, '_test_output_eq_symbols', ...
'_test_output_eq_noise_vars', '_test_input_rx_symbols', ...
'_test_input_ch_estimates');
% Add the test to the file header.
obj.addTestToHeaderFile(obj.headerFileID, testCaseString);
end % of function testvectorGenerationCases
end % methods (Test, TestTags = {'testvector'})
methods
function [mseEmp, mseNom, snrEmp, snrNom] = MSEsimulation(obj, channelSize, eqType)
%MSEsimulation Computes the expected (nominal) and empirical
% SNR and MSE achieved by the channel equalizer for the given
% channel size, i.e., number of receive ports and transmit
% layers, and equalizer type. The results are computed for
% each of the generated REs.
obj.createChTensor(channelSize);
[nSC, nSym, ~, nTx] = size(obj.channelTensor);
mseEmpTmp = zeros(nSC, nSym, nTx);
nRuns = 1000;
if nargout > 1
[mseNom, snrNom] = obj.computeREnominals(eqType);
signalPower = zeros(nSC, nSym);
noisePower = zeros(nSC, nSym);
end
for iRun = 1:nRuns
[eqSymbols, txSymbols] = obj.runCase(eqType, 1);
mseEmpTmp = mseEmpTmp + abs(eqSymbols - txSymbols).^2 / nRuns;
if nargout > 1
[sigPwrTmp, noisePwrTmp] = obj.computePowers(eqSymbols, txSymbols);
signalPower = signalPower + sigPwrTmp / nRuns;
noisePower = noisePower + noisePwrTmp / nRuns;
end
end
mseEmp = mean(mseEmpTmp, 3);
if nargout > 1
snrEmp = mean(signalPower ./ noisePower, 3);
end
end % of function MSEsimulation(obj, channelSize, eqType)
end % methods
methods (Access = private)
function createChTensor(obj, channelSize)
tdl = nrTDLChannel;
tdl.MaximumDopplerShift = 0;
tdl.SampleRate = obj.fftSize * obj.scs * 1000;
tdl.TransmissionDirection = 'Uplink';
tdl.NumTransmitAntennas = channelSize(2);
tdl.NumReceiveAntennas = channelSize(1);
% Dummy random signal.
T = obj.fftSize * obj.scs;
s = randn(T, channelSize(2)) + 1j * randn(T, channelSize(2));
% Obtain channel characterization.
[~, pathGains] = tdl(s);
pathFilters = getPathFilters(tdl);
% Channel tensor.
obj.channelTensor = nrPerfectChannelEstimate(pathGains, pathFilters, ...
obj.nRB, obj.scs, 0);
end % of function createChTensor(obj, channelSize)
function [eqSymbols, txSymbols, rxSymbols, eqNoiseVars] = runCase(obj, eqType, txScaling)
import srsLib.phy.upper.equalization.srsChannelEqualizer
[nSC, nSym, nRx, nTx] = size(obj.channelTensor);
% Tx symbols: unitary power.
txSymbols = (randn(nSC, nSym, nTx) + 1j * randn(nSC, nSym, nTx)) / sqrt(2);
noiseVar = 10^(- obj.snr/10);
% Rx symbols: start with the noise.
rxSymbols = (randn(nSC, nSym, nRx) + 1j * randn(nSC, nSym, nRx)) ...
* sqrt(noiseVar / 2);
% Rx symbols: scale and add transmitted symbols.
for iRx = 1:nRx
for iTx = 1:nTx
rxSymbols(:, :, iRx) = rxSymbols(:, :, iRx) ...
+ txScaling * obj.channelTensor(:, :, iRx, iTx) .* txSymbols(:, :, iTx);
end
end
% Equalize the Rx symbols and compute the equivalent noise
% variances.
eqSymbols = nan(nSC, nSym, nTx);
eqNoiseVars = nan(nSC, nSym, nTx);
for iSymbol = 1 : nSym
% Get the Rx and channel RE for a single OFDM symbol.
rxRE = squeeze(rxSymbols(:, iSymbol, :));
chRE = squeeze(obj.channelTensor(:, iSymbol, :, :));
% Equalize.
[eqSymbols(:, iSymbol, :), eqNoiseVars(:, iSymbol, :)] = ...
srsChannelEqualizer(rxRE, chRE, eqType, noiseVar, txScaling);
end
end % of function runCase()
function [mseN, snrN] = computeREnominals(obj, eqType)
noiseVar = 10^(- obj.snr/10);
[nSC, nSym, ~, ~] = size(obj.channelTensor);
snrN = nan(nSC, nSym);
mseN = nan(nSC, nSym);
for iSC = 1:nSC
for iSym = 1:nSym
chMatrix = squeeze(obj.channelTensor(iSC, iSym, :, :));
chHch = chMatrix' * chMatrix;
if strcmp(eqType, 'MMSE')
M = (noiseVar * eye(size(chHch)) + chHch) \ chHch;
mseLayers = 1 ./ real(diag(M)) - 1;
elseif strcmp(eqType, 'ZF')
M = chHch;
mseLayers = noiseVar * real(diag(inv(M)));
else
error('Unknown equalizer %s.', eqType);
end
mseN(iSC, iSym) = mean(mseLayers);
snrLayers = 1 ./ mseLayers;
snrN(iSC, iSym) = mean(snrLayers);
end
end
end
function [signalPower, noisePower] = computePowers(obj, eqSymbols, txSymbols)
[nSC, nSym, ~, nLayers] = size(obj.channelTensor);
noisePower = nan(nSC, nSym, nLayers);
signalPower = nan(nSC, nSym, nLayers);
for iSC = 1:nSC
for iSym = 1:nSym
txSyms = squeeze(txSymbols(iSC, iSym, :));
eqSyms = squeeze(eqSymbols(iSC, iSym, :));
[signalPower(iSC, iSym, :), noisePower(iSC, iSym, :)] = computeREpower(txSyms, eqSyms);
end
end
end % of function computePowers(obj, eqSymbols, txSymbols, eqType)
end % of methods (Access = private)
end % of classdef srsChEqualizerUnittest < srsTest.srsBlockUnittest
function [signalPower, noisePower] = computeREpower(txSymbols, eqSymbols)
signalPower = abs(txSymbols).^2;
estNoiseInterf = eqSymbols - txSymbols;
noisePower = abs(estNoiseInterf).^2;
end