-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsrsPUCCHDemodulatorFormat2Unittest.m
308 lines (250 loc) · 13.1 KB
/
srsPUCCHDemodulatorFormat2Unittest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
%srsPUCCHDemodulatorFormat2Unittest Unit tests for PUCCH Format 2 symbol demodulator functions.
% This class implements unit tests for the PUCCH Format 2 symbol demodulator functions using
% the matlab.unittest framework. The simplest use consists in creating an object with
% testCase = srsPUCCHDemodulatorFormat2Unittest
% and then running all the tests with
% testResults = testCase.run
%
% srsPUCCHDemodulatorFormat2Unittest Properties (Constant):
%
% srsBlock - The tested block (i.e., 'pucch_demodulator_format2').
% srsBlockType - The type of the tested block, including layer
% (i.e., 'phy/upper/channel_processors').
%
% srsPUCCHDemodulatorFormat2Unittest Properties (ClassSetupParameter):
%
% outputPath - Path to the folder where the test results are stored.
%
% srsPUCCHDemodulatorFormat2Unittest Properties (TestParameter):
%
% SymbolAllocation - Symbols allocated to the PUCCH transmission.
%
% PRBNum - Number of contiguous PRB allocated to PUCCH Format 2.
%
% srsPUCCHDemodulatorFormat2Unittest Methods (TestTags = {'testvector'}):
%
% testvectorGenerationCases - Generates a test vector according to the provided
% parameters.
%
% srsPUCCHDemodulatorFormat2Unittest Methods (Access = protected):
%
% addTestIncludesToHeaderFile - Adds include directives to the test header file.
% addTestDefinitionToHeaderFile - Adds details (e.g., type/variable declarations)
% to the test header file.
%
% See also matlab.unittest.
% Copyright 2021-2024 Software Radio Systems Limited
%
% This file is part of srsRAN-matlab.
%
% srsRAN-matlab is free software: you can redistribute it and/or
% modify it under the terms of the BSD 2-Clause License.
%
% srsRAN-matlab is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% BSD 2-Clause License for more details.
%
% A copy of the BSD 2-Clause License can be found in the LICENSE
% file in the top-level directory of this distribution.
classdef srsPUCCHDemodulatorFormat2Unittest < srsTest.srsBlockUnittest
properties (Constant)
%Name of the tested block.
srsBlock = 'pucch_demodulator_format2'
%Type of the tested block.
srsBlockType = 'phy/upper/channel_processors/pucch'
end
properties (ClassSetupParameter)
%Path to results folder (old 'pucch_demodulator_format2' tests will be erased).
outputPath = {['testPUCCHDemodulatorFormat2', char(datetime('now', 'Format', 'yyyyMMdd''T''HHmmss'))]}
end
properties (TestParameter)
%Symbols allocated to the PUCCH transmission.
%
% The symbol allocation is by a structure with two fields:
% - a two-element array with the starting symbol (0...13) and the length (1...14)
% of the PUCCH transmission. Example: [13, 1], and
% - a logical flag for intra-slot frequency hopping.
SymbolAllocation = { ...
struct('Allocation', [0, 1], 'FrequencyHopping', false), ...
struct('Allocation', [6, 2], 'FrequencyHopping', false), ...
struct('Allocation', [12, 2], 'FrequencyHopping', false), ...
struct('Allocation', [6, 2], 'FrequencyHopping', true), ...
struct('Allocation', [12, 2], 'FrequencyHopping', true), ...
};
%Number of contiguous PRB allocated to PUCCH Format 2 (1...16).
PRBNum = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
end
methods (Access = protected)
function addTestIncludesToHeaderFile(~, fileID)
%addTestIncludesToHeaderFile Adds include directives to the test header file.
fprintf(fileID, '#include "../../../support/resource_grid_test_doubles.h"\n');
fprintf(fileID, '#include "srsran/phy/upper/channel_processors/pucch/pucch_demodulator.h"\n');
fprintf(fileID, '#include "srsran/support/file_vector.h"\n');
end
function addTestDefinitionToHeaderFile(~, fileID)
%addTestDetailsToHeaderFile Adds details (e.g., type/variable declarations) to the test header file.
fprintf(fileID, 'struct context_t {\n');
fprintf(fileID, ' unsigned grid_nof_prb;\n');
fprintf(fileID, ' unsigned grid_nof_symbols;\n');
fprintf(fileID, ' float noise_var;\n');
fprintf(fileID, ' pucch_demodulator::format2_configuration config;\n');
fprintf(fileID, '};\n');
fprintf(fileID, '\n');
fprintf(fileID, 'struct test_case_t {\n');
fprintf(fileID, ' context_t context;\n');
fprintf(fileID, ' file_vector<resource_grid_reader_spy::expected_entry_t> symbols;\n');
fprintf(fileID, ' file_vector<cf_t> estimates;\n');
fprintf(fileID, ' file_vector<log_likelihood_ratio> uci_codeword;\n');
fprintf(fileID, '};\n');
end
end % of methods (Access = protected)
methods (Test, TestTags = {'testvector'})
function testvectorGenerationCases(testCase, SymbolAllocation, PRBNum)
%testvectorGenerationCases Generates a test vector for the given
% Fixed Reference Channel.
import srsLib.phy.upper.channel_modulation.srsDemodulator
import srsLib.phy.upper.equalization.srsChannelEqualizer
import srsTest.helpers.writeResourceGridEntryFile
import srsTest.helpers.writeInt8File
import srsTest.helpers.writeComplexFloatFile
% Generate a unique test ID.
testID = testCase.generateTestID;
% Generate random cell ID.
nCellID = randi([0, 1007]);
% Generate a random NID.
NID = randi([0, 1023]);
% Generate a random RNTI.
RNTI = randi([1, 65535]);
% Maximum resource grid size.
MaxGridSize = 275;
% Resource grid starts at CRB0.
nStartGrid = 0;
% BWP start relative to CRB0.
nStartBWP = randi([0, MaxGridSize - PRBNum - 1]);
% BWP size.
% PUCCH Format 2 frequency allocation must fit inside the BWP.
nSizeBWP = randi([PRBNum, MaxGridSize - nStartBWP]);
% PUCCH PRB Start relative to the BWP.
PRBStart = randi([0, nSizeBWP - PRBNum]);
% Fit resource grid size to the BWP.
nSizeGrid = nStartBWP + nSizeBWP;
% PRB set assigned to PUCCH Format 2 within the BWP.
% Each element within the PRB set indicates the location of a
% Resource Block relative to the BWP starting PRB.
PRBSet = PRBStart : PRBStart + PRBNum - 1;
% Normal cyclic prefix.
cyclicPrefix = 'normal';
% Configure the carrier according to the test parameters.
carrier = nrCarrierConfig( ...
NCellID=nCellID, ...
NSizeGrid=nSizeGrid, ...
NStartGrid=nStartGrid, ...
CyclicPrefix=cyclicPrefix ...
);
% Resource grid dimensions.
nofGridSubcs = nSizeGrid * 12;
nofGridSymbols = carrier.SymbolsPerSlot;
% No frequency hopping.
if SymbolAllocation.FrequencyHopping
frequencyHopping = 'intraSlot';
secondPRBStart = randi([0, nSizeBWP - PRBNum]);
else
frequencyHopping = 'neither';
secondPRBStart = 1;
end
% Configure the PUCCH.
pucch = nrPUCCH2Config( ...
NStartBWP=nStartBWP, ...
NSizeBWP=nSizeBWP, ...
SymbolAllocation=SymbolAllocation.Allocation, ...
PRBSet=PRBSet, ...
FrequencyHopping=frequencyHopping, ...
SecondHopStartPRB=secondPRBStart, ...
NID=NID, ...
RNTI=RNTI ...
);
% Number of PUCCH Subcarriers.
nofPUCCHSubcs = PRBNum * 12;
% Number of PUCC Subcarriers used for DM-RS.
% DM-RS is mapped to subcarriers 1, 4, 7, 10 of each PRB.
nofPUCCHDMRSSubcs = 4 * PRBNum;
nofPUCCHDataSubcs = nofPUCCHSubcs - nofPUCCHDMRSSubcs;
% Number of PUCCH data RE in a single slot.
nofPUCCHDataRE = nofPUCCHDataSubcs * SymbolAllocation.Allocation(2);
% Number of bits that can be mapped to the available radio
% resources.
[dataSymbolIndices, info] = nrPUCCHIndices(carrier, pucch, IndexStyle='subscript', IndexBase='0based');
uciCWLength = info.G;
% Generate a random UCI codeword that fills the available PUCCH resources.
uciCW = randi([0, 1], uciCWLength, 1);
% Modulate PUCCH Format 2.
modulatedSymbols = nrPUCCH(carrier, pucch, uciCW, OutputDataType='single');
if (length(dataSymbolIndices) ~= nofPUCCHDataRE)
error("Inconsistent UCI Codeword and PUCCH index list lengths");
end
% Create some noise samples with different variances. Round standard
% deviation to reduce double to float error in the soft-demodulator.
normNoise = (randn(nofPUCCHDataRE, 1) + 1i * randn(nofPUCCHDataRE, 1)) / sqrt(2);
noiseStd = round(0.1 + 0.9 * rand(), 1);
noiseVar = noiseStd.^2;
% Create random channel estimates with a single Rx port and Tx layer.
% Create a full resource grid of estimates.
estimates = (0.1 + 0.9 * rand(nofGridSubcs, nofGridSymbols)) + 1i * (0.1 + 0.9 * rand(nofGridSubcs, nofGridSymbols));
estimates = estimates / sqrt(2);
% Extract channel estimation coefficients corresponding to
% PUCCH control data RE.
dataChEsts = estimates(sub2ind(size(estimates), dataSymbolIndices(:, 1) + 1, dataSymbolIndices(:, 2) + 1));
% Create noisy modulated symbols.
channelSymbols = dataChEsts .* modulatedSymbols + (noiseStd * normNoise);
% Equalize channel symbols.
[eqSymbols, eqNoiseVars] = srsChannelEqualizer(channelSymbols, dataChEsts, 'ZF', noiseVar, 1);
% Write each complex symbol and their associated indices into a binary file.
testCase.saveDataFile('_test_input_symbols', testID, ...
@writeResourceGridEntryFile, channelSymbols, dataSymbolIndices);
% Write channel estimates to a binary file.
testCase.saveDataFile('_test_input_estimates', testID, @writeComplexFloatFile, estimates(:));
% Convert equalized symbols into softbits.
schSoftBits = srsDemodulator(eqSymbols(:), 'QPSK', eqNoiseVars(:));
% Scrambling sequence for PUCCH.
[scSequence, ~] = nrPUCCHPRBS(NID, RNTI, length(schSoftBits));
% Encode the scrambling sequence into the sign, so it can be
% used with soft bits.
scSequence = -(scSequence * 2) + 1;
% Apply descrambling.
schSoftBits = schSoftBits .* scSequence;
% Write soft bits to a binary file.
testCase.saveDataFile('_test_output_sch_soft_bits', testID, @writeInt8File, schSoftBits);
% Reception port list.
portsString = '{0}';
% First PRB within the resource grid allocated to PUCCH.
firstPRB = nStartBWP + PRBStart;
% First PRB within the resource grid allocated to PUCCH for the second hop, if any.
if SymbolAllocation.FrequencyHopping
secondHopPRB = nStartBWP + secondPRBStart;
else
secondHopPRB = {};
end
pucchF2Config = {...
portsString, ... % rx_ports
firstPRB, ... % first_prb
secondHopPRB, ... % second_hop_prb
PRBNum, ... % nof_prb
SymbolAllocation.Allocation(1), ... % start_symbol_index
SymbolAllocation.Allocation(2), ... % nof_symbols
RNTI, ... % rnti
NID, ... % n_id
};
testCaseContext = { ...
nSizeGrid, ... % grid_nof_prb
nofGridSymbols, ... % grid_nof_symbols
noiseVar, ... % noise_var
pucchF2Config, ... % config
};
testCaseString = testCase.testCaseToString(testID, testCaseContext, true, ...
'_test_input_symbols', '_test_input_estimates', '_test_output_sch_soft_bits');
% Add the test to the file header.
testCase.addTestToHeaderFile(testCase.headerFileID, testCaseString);
end % of function testvectorGenerationCases
end % of methods (Test, TestTags = {'testvector'})
end % of classdef srsPUCCHDemodulatorFormat2Unittest