-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathsystem.config
100 lines (74 loc) · 2.3 KB
/
system.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
### use # to comment out the configure item
################ Status ################
mode=interactive_predict
# string: train/interactive_predict/test/save_pb_model
################ Datasets(Input/Output) ################
# 此处展示的是demo数据集所在的文件夹,训练自己数据前请自己设置一个文件夹
datasets_fold=data/example_datasets
train_file=train.csv
dev_file=dev.csv
test_file=None
# 设置词表存放的文件夹
vocabs_dir=data/example_datasets/vocabs
# 设置训练日志存放的文件夹
log_dir=data/example_datasets/logs
delimiter=b
# string: (t: "\t";"table")|(b: "backspace";" ")|(other, e.g., '|||', ...)
# 在此处设置模型保存位置,代码支持在原始模型上继续训练,新数据或从头训练一定要改!
checkpoints_dir=checkpoints/bilstm-crf
# 模型的名字
checkpoint_name=model
################ Labeling Scheme ################
label_scheme=BIO
# string: BIO/BIESO
label_level=2
# int, 1:BIO/BIESO; 2:BIO/BIESO + suffix
# max to 2
hyphen=-
# string: -|_, for connecting the prefix and suffix: `B_PER', `I_LOC'
suffix=[ORG,PER,LOC]
# unnecessary if label_level=1
measuring_metrics=[precision,recall,f1,accuracy]
# string: accuracy|precision|recall|f1
# f1 is compulsory
################ Model Configuration ################
use_pretrained_model=False
pretrained_model=Bert
# Bert/AlBert
huggingface_tag=bert-base-chinese
# huggingface上模型的名字
finetune=False
use_middle_model=True
middle_model=bilstm
# bilstm/idcnn
# 不使用预训练模型的时候词表的维度
embedding_dim=300
# int
# 选择lstm时,隐藏层大小
hidden_dim=200
# 选择idcnn时filter的个数
filter_nums=64
idcnn_nums=2
max_sequence_length=300
# int, cautions! set as a LARGE number as possible,
# this will be kept during training and inferring, text having length larger than this will be truncated.
CUDA_VISIBLE_DEVICES=0
# int, -1:CPU, [0,]:GPU
# coincides with tf.CUDA_VISIBLE_DEVICES
seed=42
################ Training Settings ################
epoch=300
batch_size=32
dropout=0.5
# 微调预训练模型时,建议设置为5e-5
learning_rate=0.001
optimizer=Adam
# string: SGD/Adagrad/AdaDelta/RMSprop/Adam/AdamW
use_gan=False
gan_method=fgm
# fgm/pgd
checkpoints_max_to_keep=3
print_per_batch=20
is_early_stop=True
patient=5
# unnecessary if is_early_stop=False