-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSNFUtils.py
231 lines (182 loc) · 8.01 KB
/
SNFUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python
import os,subprocess,sys
from itertools import izip
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.stats.stats import pearsonr, spearmanr
def plot_txs (tx_i, tx_j, clust_i, clust_j,
x_i, y_i, error_i, xfit_i, yfit_i,
x_j, y_j, error_j, xfit_j, yfit_j):
#plt.figure()
fig, ax = plt.subplots()
plt.errorbar(x_i, y_i, marker='x', yerr=error_i, ls="None")
plt.plot(xfit_i, yfit_i)
plt.errorbar(x_j, y_j, marker='s', yerr=error_j, ls="None")
plt.plot(xfit_j, yfit_j)
diffs = [yfit_i[i] - yfit_j[i] for i in range(len(yfit_i))]
plt.plot(xfit_i, diffs)
ymax = max( max(y_i), max(yfit_i), max(y_j), max(yfit_j), max(diffs))*1.2+1
ymin = min( min(y_i), min(yfit_i), min(y_j), min(yfit_j), min(diffs))*1.2-1
#plt.plot(x, y, 'x', xnew, ynew)
plt.axis([.5, 9.5, ymin, ymax])
ax.set_xticks(range(1,10))
ax.set_xticklabels(['80S', 'poly2', 'poly3', 'poly4', 'poly5', 'poly6', 'poly7', 'poly8', 'cyto'])
plt.legend([tx_i + "_clust %s" % clust_i, tx_i + "_fit", tx_j + "_clust %s" % clust_j, tx_j + "_fit", "difference"], fontsize=8)
#residuals = sum(infodict['fvec']**2)
#plt.title("Sq. Resid.: %5.4f; Res/Median: %5.4f" % (residuals, residuals/ymedian))
#perr = np.sqrt(np.diag(pcov))
#perr_percent = [ np.fabs(perr[i]/popt[i]) for i in range(len(popt))]
#avg_percent_error = np.mean(perr_percent)
#total_percent_error = sum(perr_percent)
#weighted_perr = sum([ perr_percent[i] * np.fabs(popt[i]) for i in range(len(popt))])
prsn = pearsonr( yfit_i, yfit_j)[0]
sprmn = spearmanr( yfit_i, yfit_j)[0]
plt.text(.75, 1, "Parms pearson: %3.2f spearman: %3.2f" % (prsn, sprmn), fontsize=8)
plt.savefig("%s vs %s" % (tx_i, tx_j))
plt.close(fig)
def third_order_poly_fit_plot (x, y, outname, yerror):
def func(x, p1, p2, p3, p4):
return p1 + p2 * x + p3 * x**2 + p4 * x**3
xdata = np.array(x)
ydata = np.array(y)
ymedian = np.median(y)
xnew = np.arange(1, max(x), 0.001)
popt, pcov, infodict, mesg, ier = curve_fit(func, xdata, ydata,p0=(1, 1, 1, 1),full_output=1)
ynew = [func(i, popt[0], popt[1], popt[2], popt[3]) for i in xnew]
#plt.figure()
fig, ax = plt.subplots()
plt.errorbar(x, y, marker='x', yerr=yerror, ls="None")
plt.plot(xnew, ynew)
#plt.plot(x, y, 'x', xnew, ynew)
plt.axis([.5, 9.5, 0, max( max(y), max(ynew) ) + 1])
ax.set_xticklabels(['', '80S', 'poly2', 'poly3', 'poly4', 'poly5', 'poly6', 'poly7', 'poly8', 'cyto'])
plt.legend(['Input', 'Third order polynomial'])
residuals = sum(infodict['fvec']**2)
plt.title("Sq. Resid.: %5.4f; Res/Median: %5.4f" % (residuals, residuals/ymedian))
perr = np.sqrt(np.diag(pcov))
perr_percent = [ np.fabs(perr[i]/popt[i]) for i in range(len(popt))]
avg_percent_error = np.mean(perr_percent)
total_percent_error = sum(perr_percent)
weighted_perr = sum([ perr_percent[i] * np.fabs(popt[i]) for i in range(len(popt))])
prsn = pearsonr( [func(i, popt[0], popt[1], popt[2], popt[3]) for i in x], y)[0]
sprmn = spearmanr( [func(i, popt[0], popt[1], popt[2], popt[3]) for i in x], y)[0]
def prt(inp): #"pretty"
return ["%3.2f" % inp[i] for i in range(len(inp))]
plt.text(.75, 1, "Parms %s\nerrors %s\n%% error %s\nmean %%: %3.2f sum %%: %3.2f weighted %%: %3.2f pearson: %3.2f spearman: %3.2f" %
(prt(popt), prt(perr), prt(perr_percent), avg_percent_error, total_percent_error, weighted_perr, prsn, sprmn),
fontsize=8)
plt.savefig(outname)
plt.close(fig)
def plot_dist (x, y, outname, yerror):
xdata = np.array(x)
ydata = np.array(y)
ymedian = np.median(y)
fig, ax = plt.subplots()
plt.errorbar(x, y, marker='x', yerr=yerror, ls="None")
plt.axis([.5, 9.5, 0, max(y) + 1])
ax.set_xticks(range(1,10))
ax.set_xticklabels(['80S', 'poly2', 'poly3', 'poly4', 'poly5', 'poly6', 'poly7', 'poly8', 'cyto'])
plt.legend(['Input'])
plt.savefig(outname)
plt.close(fig)
def plot_dist_fancy (x, y, outname, yerror, title):
xdata = np.array(x)
ydata = np.array(y)
ymedian = np.median(y)
fig, ax = plt.subplots()
plt.errorbar(x, y, marker='o', markersize=16, color='k', yerr=yerror, ls="None")
# plot them all
#plt.axis([.5, len(x) + 0.5, 0, max(max(y), max([y[i] + yerror[i] for i in range(len(y))]))])
#ax.set_xticks(range(1,len(x)+1))
#ax.set_xticklabels(['40S', '60S', '80S', 'poly2', 'poly3', 'poly4', 'poly5', 'poly6', 'poly7', 'poly8', 'cyto'], size=20, rotation=45)
# leave out 40/60 for comparison to clustering
plt.axis([2.5, len(x) + 0.5, 0, max(max(y[2:]), max([y[i] + yerror[i] for i in range(2, len(y))]))])
ax.set_xticks(range(3,len(x)+1))
ax.set_xticklabels(['80S', 'poly2', 'poly3', 'poly4', 'poly5', 'poly6', 'poly7', 'poly8', 'cyto'], size=20, rotation=45)
# leave out 40/60/80 for comparison to frac-seq rtpcr
#plt.axis([3.5, len(x) + 0.5, 0, max(max(y), max([y[i] + yerror[i] for i in range(len(y))]))])
#ax.set_xticks(range(4,len(x)+1))
#ax.set_xticklabels(['poly2', 'poly3', 'poly4', 'poly5', 'poly6', 'poly7', 'poly8', 'cyto'], size=20, rotation=45)
ylabels = ax.get_yticks().tolist()
ax.set_yticklabels(ylabels, size=20)
plt.title(title, size=24)
plt.ylabel("TPM", size=24)
plt.tick_params(which='both', length=8, width=2, pad=10)
plt.tick_params(
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off',
right='off') # ticks along the top edge are off
#labelbottom='off') # labels along the bottom edge are off
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_linewidth(4)
ax.spines['left'].set_linewidth(4)
#ax.spines['bottom'].set_visible(False)
#ax.spines['left'].set_visible(False)
plt.axvline(x=10.5, linewidth=5, color='#cccccc', dashes=(4,16), dash_capstyle="round")
plt.tight_layout()
plt.savefig(outname)
plt.close(fig)
def pairwise(t):
it = iter(t)
return izip(it, it)
def chunkwise(t, size=2):
it = iter(t)
return izip(*[it]*size)
def stdout_from_command(command):
p = subprocess.Popen(command,
stdout = subprocess.PIPE,
shell = True)
return iter(p.stdout.readline, b'')
def safe_open_file(filename):
if (os.path.exists(filename)):
sys.exit("FATAL: file %s exists; cowardly refusing to overwrite." % filename)
try:
outfile = open(filename, "w")
except:
sys.exit("FATAL: cannot open file %s for writing." % filename)
return outfile
def prompt(promptstr):
print promptstr
inp = raw_input("\nContinue? [y/n]").lower()
if (inp == "n" or inp == "no"):
sys.exit(0)
def is_number(s):
if s is None:
return False
try:
float(s)
return True
except (ValueError, TypeError):
return False
def merge(d1, d2, merge_fn=lambda x,y:y):
"""
http://stackoverflow.com/questions/38987/how-can-i-merge-two-python-dictionaries-in-a-single-expression
Merges two dictionaries, non-destructively, combining
values on duplicate keys as defined by the optional merge
function. The default behavior replaces the values in d1
with corresponding values in d2. (There is no other generally
applicable merge strategy, but often you'll have homogeneous
types in your dicts, so specifying a merge technique can be
valuable.)
Examples:
>>> d1
{'a': 1, 'c': 3, 'b': 2}
>>> merge(d1, d1)
{'a': 1, 'c': 3, 'b': 2}
>>> merge(d1, d1, lambda x,y: x+y)
{'a': 2, 'c': 6, 'b': 4}
"""
print "---- d1 ----"
print d1
print "---- d2 ----"
print d2
result = dict(d1)
for k,v in d2.iteritems():
if k in result:
result[k] = merge_fn(result[k], v)
else:
result[k] = v
return result