-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathisoform_fraction.py
executable file
·344 lines (241 loc) · 11.9 KB
/
isoform_fraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python
# isoform_fraction.py
# calculate the percent of genes with a "minor" isoform above a specified fraction or range of fractions
# SNF 2017
import sys, os, argparse, csv, random, re
from SNFUtils import * # prompt, safe_open_file, stdout_from_command
from collections import defaultdict, namedtuple
from scipy.stats import mannwhitneyu, ks_2samp
import numpy as np
import matplotlib.pyplot as plt
from itertools import izip_longest
parser = argparse.ArgumentParser(description="Calculate the percent of genes with a minor isoform above a specified fraction")
parser.add_argument("-i", "--input", help="File containing transcript distributions", required=True)
parser.add_argument("-o", "--output", help="Output filename (default is stdout)", default="stdout")
parser.add_argument("-n", "--nrep", help="Number of replicates of each point", required=True, type=int)
parser.add_argument("--tx-to-gene", help="File containing transcript ID to gene name mapping", required=True)
parser.add_argument("--text", help="Output text data in addition to plots.", action="store_true")
parser.add_argument("--format", help="Image format to export (png or pdf).", default="pdf")
parser.add_argument("--isoform-fraction", help="What fraction of minor isoform to include (default 0.1)", type=float, default=0.1)
args = parser.parse_args()
if (args.output == "stdout"):
outfile = sys.stdout
else:
outfile = safe_open_file(args.output)
tx_to_gene = defaultdict(str)
tx_to_name = defaultdict(str)
tx_to_txname = defaultdict(str)
print "Assuming five samples: cyto, nuc, monosome, low polysome, high polysome."
Isoform_samples = namedtuple('Isoform_samples', ['id', 'cyto', 'nuc', 'mono', 'low', 'high'])
# each of these is a dictionary with keys of gene names with values a list namedtuple of Samples for each isoform
hesc = defaultdict(list)
npc = defaultdict(list)
neu14 = defaultdict(list) #14 day neurons
neu50 = defaultdict(list) #50 day neurons
processed = 0
print "\nCreating tx_to_gene dictionary from %s..." % args.tx_to_gene
with open(args.tx_to_gene, "r") as txfile:
for line in txfile:
line = line.split()
if (len(line) < 4):
sys.exit("ERROR: line in tx_to_gene file has less than four entries: %s" % line)
tx_to_gene[line[0]] = line[1]
tx_to_name[line[0]] = line[2]
tx_to_txname[line[0]] = line[3]
processed += 1
print "Dictionary created (%d entries)." % processed
# sample input format:
#txid s1r1 s1r2 s2r1 s2r2 s3r1 s3r2 etc
np.seterr(all='raise')
processed = 0
rejected_pe = 0
rejected_zero = 0
fname = args.input
with open(fname, "r") as infile:
#inspect the first line
random.seed(1)
if fname.endswith("csv"):
line = [i.strip("\"") for i in infile.readline().split(",")]
else:
line = [i.strip("\"") for i in infile.readline().split()]
if (is_number(line[2])): # no header
found_header = False
infile.seek(0) #rewind
print "\tNo header found."
else:
found_header = True
# cufflinks output has the replicate number as the last two (i.e. _0 or _1). this trims.
header = [i[:-2] for i in line]
print "\tHeader found on line one."
print "\tOrder parsed: "
header = [ header[i*args.nrep+1] for i in range(len(header)/2) ]
print "\t\t" + ", ".join(header)
print "Header has %d columns" % len(header)
if ( (len(line) - 1) % args.nrep):
print "\tWARNING: %d observations found; not divisible by %d replicates." % (len(line) - 1, args.nrep)
npts = (len(line) - 1)/args.nrep
print "\tProcessing %d points (%d replicates)" % ( npts, args.nrep)
for line in infile:
if (not line.strip()):
continue
if fname.endswith("csv"):
line = [i.strip("\"") for i in line.split(",")]
else:
line = [i.strip("\"") for i in line.split()]
# convert all to floats before continuing...
line = [line[0]] + [float(i) for i in line[1:]]
txid = line[0]
obs = line[1:] # the observations
nobs = len(obs) / args.nrep
# 1 read on a 1kb transcript out of 10 million -> FPKM = 1e-10. rounding to this precision.
obs = np.around(obs, 10)
if (len(obs) % args.nrep):
print "\tWarning: transcript %s has %d observations which is not divisible by %d replicates" % (txid, len(obs), args.nrep)
# collapse replicates into means, preserve stdev
means = [np.mean(i) for i in chunkwise(obs, args.nrep)]
#stdevs = [np.std(i) for i in chunkwise(obs, args.nrep)]
if txid in tx_to_gene:
geneid = tx_to_gene[txid]
hesc[geneid].append(Isoform_samples(txid, *means[0:5]))
npc[geneid].append(Isoform_samples(txid, *means[5:10]))
neu14[geneid].append(Isoform_samples(txid, *means[10:15]))
neu50[geneid].append(Isoform_samples(txid, *means[15:20]))
else:
print "Warning: gene name for transcript %s not found" % txid
processed += 1
if not (processed % 5000):
print "Processed %d lines." % processed
# now, have read in all the transcripts into these gene dicts. compute the percent that have above whatever fraction
# calculate the percent of genes that have a minor transcript above the specified fraction for dicts constructed as described above
# returns this percent as a fraction
def calc_isoform_fraction(dict, isoform_fraction, sample):
genes_over_fraction = 0
genes_processed = 0
geneids_over_fraction = []
samples = []
for key, val in dict.iteritems():
if sample == "cyto":
samples = [i.cyto for i in val]
elif sample == "nuc":
samples = [i.nuc for i in val]
elif sample == "mono":
samples = [i.mono for i in val]
elif sample == "low":
samples = [i.low for i in val]
elif sample == "high":
samples = [i.high for i in val]
else:
print "Unrecognized sample %s" % sample
total = sum(samples)
if total > 1 : # only continue if expressed (TPM > 1 for the gen)
# transform to fractional isoform abundance
samples = [i / total for i in samples]
n_over_fraction = sum([i > isoform_fraction for i in samples])
if n_over_fraction > 1: # implies at least one minor isoform above the fraction cutoff
genes_over_fraction += 1
geneids_over_fraction.append(key)
genes_processed += 1
#print "Found %d genes over fraction %.2f out of %d genes (%3.2f%%) in %s" % (genes_over_fraction, isoform_fraction, genes_processed, genes_over_fraction/float(genes_processed)*100, sample)
#print geneids_over_fraction[0:10]
return genes_over_fraction/float(genes_processed)
#for sample in ["cyto", "nuc", "mono", "low", "high"]:
# calc_isoform_fraction(hesc, args.isoform_fraction, sample)
# calc_isoform_fraction(npc, args.isoform_fraction, sample)
# calc_isoform_fraction(neu14, args.isoform_fraction, sample)
# calc_isoform_fraction(neu50, args.isoform_fraction, sample)
def plot_it(cell_dict, name, npoints):
xvals = np.linspace(0, 0.5, npoints)
cyto_y = [calc_isoform_fraction(cell_dict, xvals[i], "cyto") for i in range(len(xvals))]
nuc_y = [calc_isoform_fraction(cell_dict, xvals[i], "nuc") for i in range(len(xvals))]
mono_y = [calc_isoform_fraction(cell_dict, xvals[i], "mono") for i in range(len(xvals))]
low_y = [calc_isoform_fraction(cell_dict, xvals[i], "low") for i in range(len(xvals))]
high_y = [calc_isoform_fraction(cell_dict, xvals[i], "high") for i in range(len(xvals))]
cdffile = safe_open_file("%s_ecdf.csv" % name)
cdffile.write("xvals,%s_cyto,%s_nuc,%s_mono,%s_low,%s_high\n" % (name, name, name, name, name))
cdffile.write("\n".join(["%f,%f,%f,%f,%f,%f" % (xvals[i], cyto_y[i], nuc_y[i], mono_y[i], low_y[i], high_y[i]) for i in range(len(xvals))]))
mw_cn_test = mannwhitneyu(cyto_y, nuc_y)
mw_ch_test = mannwhitneyu(cyto_y, high_y)
# plot eCDFs
fig, ax = plt.subplots()
plt.plot( xvals, cyto_y )
plt.plot( xvals, nuc_y )
plt.plot( xvals, mono_y )
plt.plot( xvals, low_y )
plt.plot( xvals, high_y )
plt.legend(["cyto", "nuc", "mono", "low", "high"], fontsize=8)
#plt.text(.7, 0.15, "K-S, p = %4.2f, %.3g" % (ks_test[0], ks_test[1]), fontsize=8, transform=ax.transAxes)
plt.text(.7, 0.15, "M-W CN U, p = %4.2f, %.3g" % (mw_cn_test[0], mw_cn_test[1]), fontsize=8, transform=ax.transAxes)
plt.text(.7, 0.1, "M-W CH U, p = %4.2f, %.3g" % (mw_ch_test[0], mw_ch_test[1]), fontsize=8, transform=ax.transAxes)
#plt.text(.7, 0.05, "set1: %s; set2: %s" % (", ".join(args.set1[1::2]), ", ".join(args.set2[1::2])), fontsize=8, transform=ax.transAxes)
#plt.text(.7, 0.02, "n_1: %d; n_2: %d; n_3: %d" % (len(ivals), len(jvals)), fontsize=8, transform=ax.transAxes)
plt.savefig("%s_ecdf.png" % name)
plt.close(fig)
print "plotting hesc"
plot_it(hesc, "hesc", 100)
print "plotting npc"
plot_it(npc, "npc", 100)
print "plotting neu14"
plot_it(neu14, "neu14", 100)
print "plotting neu50"
plot_it(neu50, "neu50", 100)
# now count how many isoforms there are per gene that are above a certain fraction
# returns a dict of [number_of_isoforms][count_of_genes]
def isoforms_per_gene(dict, fraction, sample):
isoforms_over_fraction = defaultdict(int)
samples = []
for key, val in dict.iteritems():
if sample == "cyto":
samples = [i.cyto for i in val]
elif sample == "nuc":
samples = [i.nuc for i in val]
elif sample == "mono":
samples = [i.mono for i in val]
elif sample == "low":
samples = [i.low for i in val]
elif sample == "high":
samples = [i.high for i in val]
else:
print "Unrecognized sample %s" % sample
total = sum(samples)
if total > 1: # only continue if expressed (TPM > 1 cutoff)
# transform to fractional isoform abundance
samples = [i / total for i in samples]
n_over_fraction = sum([i > fraction for i in samples])
isoforms_over_fraction[n_over_fraction] += 1
return isoforms_over_fraction
# run isoforms_per_gene and print the output for a cell type (name) for a specified percent (not fraction)
def count_it(dict, name, percent):
cyto = isoforms_per_gene(dict, percent/100., "cyto")
nuc = isoforms_per_gene(dict, percent/100., "nuc")
mono = isoforms_per_gene(dict, percent/100., "mono")
low = isoforms_per_gene(dict, percent/100., "low")
high = isoforms_per_gene(dict, percent/100., "high")
histfile = safe_open_file("%s_isoforms_%d.csv" % (name, percent))
nrow = max(max(cyto.keys()), max(nuc.keys()), max(mono.keys()), max(low.keys()), max(high.keys()))
xvals = range(nrow+1)
cyto_list = [cyto[i] for i in xvals]
nuc_list = [nuc[i] for i in xvals]
mono_list = [mono[i] for i in xvals]
low_list = [low[i] for i in xvals]
high_list = [high[i] for i in xvals]
histfile.write("n_isoforms,%s_cyto,%s_nuc,%s_mono,%s_low,%s_high\n" % (name, name, name, name, name))
histfile.write("\n".join(["%f,%f,%f,%f,%f,%f" % (xvals[i], cyto[i], nuc[i], mono[i], low[i], high[i]) for i in range(nrow+1)]))
# plot "histograms"
fig, ax = plt.subplots()
plt.plot( xvals, cyto_list )
plt.plot( xvals, nuc_list )
plt.plot( xvals, mono_list )
plt.plot( xvals, low_list )
plt.plot( xvals, high_list )
plt.legend(["cyto", "nuc", "mono", "low", "high"], fontsize=8)
plt.savefig("%s_hist_%d.png" % (name, percent))
plt.close(fig)
for i in [5, 10, 25]:
print "counting hesc %d" % i
count_it(hesc, "hesc", i)
print "counting npc %d" % i
count_it(npc, "npc", i)
print "counting neu14 %d" % i
count_it(neu14, "neu14", i)
print "counting neu50 %d" % i
count_it(neu50, "neu50", i)