-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart_d_mllib.py
33 lines (24 loc) · 1.05 KB
/
part_d_mllib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from pyspark.mllib.tree import RandomForest
from pyspark import SparkContext
sc = SparkContext()
def predict(training_data, test_data):
# TODO: Train random forest classifier from given data
# Result should be an RDD with the prediction of the random forest for each
# test data point
return None
if __name__ == "__main__":
raw_training_data = sc.textFile("dataset/training.data")
raw_test_data = sc.textFile("dataset/test-features.data")
# TODO: Parse RDD from raw training data
# Hint: Look at the format of data required by the random forest classifier
# Hint 2: map() can be used to process each line in raw_training_data and
# raw_test_data
training_data = None
# TODO: Parse RDD from raw test data
# Hint: Look at the data format required by the random forest classifier
test_data = None
predictions = predict(training_data, test_data)
# You can take a look at dataset/test-labels.data to see if your
# predictions were right
for pred in predictions.collect():
print(int(pred))