-
Notifications
You must be signed in to change notification settings - Fork 0
/
primitives.py
432 lines (346 loc) · 18.1 KB
/
primitives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import argparse
import sys
sys.path.insert(0, '../lasagne')
import lasagne
import theano
import theano.tensor as T
from lasagne import init
from lasagne.init import *
from lasagne.layers import *
from lasagne.nonlinearities import *
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
class BernoulliDropout(Layer):
def __init__(self, incoming, p=0.5, **kwargs):
super().__init__(incoming, **kwargs)
self.p = p
self._srng = RandomStreams(get_rng().randint(1, 2147462579))
def get_output_for(self, input_, deterministic=False, **kwargs):
retain_prob = 1 - self.p
if deterministic:
return T.ones(self.input_shape)
return self._srng.binomial(self.input_shape, p=retain_prob, dtype=theano.config.floatX) / retain_prob
def seq_1_to_1():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = DenseRecurrentCell(cell_inp, n_units)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def seq_1_to_2():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell_1 = DenseRecurrentCell(cell_inp, n_units)['output']
cell_2 = DenseRecurrentCell(cell_inp, n_units)['output']
cell = IdentityLayer({'output_1': cell_1, 'output_2': cell_2})
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(theano.function([l_inp.input_var], helper.get_output(l_rec))(x_in))
def seq_2_to_1():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp_1 = InputLayer((n_batch, seq_len, n_features))
l_inp_2 = InputLayer((n_batch, seq_len, n_features))
cell_inp_1 = InputLayer((n_batch, n_features))
cell_inp_2 = InputLayer((n_batch, n_features))
cell = ConcatLayer([cell_inp_1, cell_inp_2])
cell = DenseRecurrentCell(cell, n_units)['output']
l_rec = RecurrentContainerLayer({cell_inp_1: l_inp_1, cell_inp_2: l_inp_2}, cell)
x_in_1 = np.random.random((n_batch, seq_len, n_features)).astype('float32')
x_in_2 = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp_1.input_var: x_in_1, l_inp_2.input_var: x_in_2}))
def seq_0_to_1():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
hid_inp = InputLayer((n_batch, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = CustomRecurrentCell(
None, None, DenseLayer(cell_inp, n_features), hid_init=hid_inp)['output']
cell = DenseRecurrentCell(cell, n_units)['output']
l_rec = RecurrentContainerLayer({}, cell, n_steps=seq_len)
x_in = np.random.random((n_batch, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({hid_inp.input_var: x_in}))
def hid_fixed():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = DenseRecurrentCell(cell_inp, n_units, hid_init=init.Constant(0.), inits_fixed={'output'})['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def hid_learnt():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = DenseRecurrentCell(cell_inp, n_units, hid_init=init.Constant(0.))['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def hid_layer():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
hid_inp = InputLayer((n_batch, n_units))
cell_inp = InputLayer((n_batch, n_features))
cell = DenseRecurrentCell(cell_inp, n_units, hid_init=hid_inp)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
hid_in = np.random.random((n_batch, n_units)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in, hid_inp.input_var: hid_in}))
def vanilla_rnn():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = DenseRecurrentCell(cell_inp, n_units)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def vanilla_lstm():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = LSTMCell(cell_inp, n_units)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def vanilla_gru():
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = GRUCell(cell_inp, n_units)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def convolutional_rnn():
n_batch, seq_len, n_channels, width, height = 2, 3, 4, 5, 6
n_out_filters = 7
filter_shape = (3, 3)
l_inp = InputLayer((n_batch, seq_len, n_channels, width, height))
cell_inp = InputLayer((None, n_channels, width, height))
cell_in_to_hid = Conv2DLayer(cell_inp, n_out_filters, filter_shape, pad='same')
cell_hid_inp = InputLayer((None, n_out_filters, width, height))
cell_hid_to_hid = Conv2DLayer(cell_hid_inp, n_out_filters, filter_shape, pad='same')
cell = CustomRecurrentCell(cell_inp, cell_in_to_hid, cell_hid_to_hid)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_channels, width, height)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def stack_lstm_gru():
n_batch, seq_len, n_features = 2, 3, 4
n_units_1, n_units_2 = 5, 6
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = LSTMCell(cell_inp, n_units_1)['output']
cell = GRUCell(cell, n_units_2)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec).eval({l_inp.input_var: x_in}))
def stack_lstm_gru_step_input():
n_batch, seq_len, n_features = 2, 3, 4
n_units_1, n_units_2 = 5, n_features
cell_inp = InputLayer((n_batch, n_features))
cell_hid_inp = InputLayer((n_batch, n_units_1))
cell = LSTMCell(cell_inp, n_units_1, hid_init=cell_hid_inp)['output']
cell = GRUCell(cell, n_units_2)['output']
l_rec = RecurrentContainerLayer({}, cell, {cell_inp: cell}, n_steps=seq_len)
x_in = np.random.random((n_batch, n_units_1)).astype('float32')
print(helper.get_output(l_rec).eval({cell_hid_inp.input_var: x_in}))
def rnn_dropout_output():
class RNNDropoutOutputCell(CellLayer):
def __init__(self, incoming, n_units_, **kwargs):
self.n_units = n_units_
n_inputs = np.prod(incoming.output_shape[1:])
self.dropout = BernoulliDropout(InputLayer((incoming.output_shape[0], n_units_)))
# Passing the dropout layer to incomings directly instead of to inits will not add it to non_seqs,
# therefore the dropout masks would change per iteration.
super().__init__({'input': incoming}, {'output': init.Constant(0.), 'dropout': self.dropout}, **kwargs)
self.W_in_to_hid = self.add_param(init.Normal(0.1), (n_inputs, n_units_), name='W_in_to_hid')
self.W_hid_to_hid = self.add_param(init.Normal(0.1), (n_units_, n_units_), name='W_hid_to_hid')
def get_output_shape_for(self, input_shapes):
return {'output': (input_shapes['input'][0], self.n_units)}
def get_output_for(self, inputs, precompute_input=False, **kwargs):
input_, hid_previous, dropout_ = inputs['input'], inputs['output'], inputs['dropout']
output = tanh(T.dot(input_, self.W_in_to_hid) + T.dot(hid_previous, self.W_hid_to_hid))
output *= dropout_
return {'output': output}
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = RNNDropoutOutputCell(cell_inp, n_units)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec, deterministic=False).eval({l_inp.input_var: x_in}))
def lstm_dropout_mcls():
'''
References
----------
.. [1] Moon, Taesup; Choi, Heeyoul; Lee Hoshik; Song, Inchul: "RnnDrop: A Novel Dropout for RNNs in ASR"
'''
class LSTMDropoutMCLSCell(CellLayer):
def __init__(
self, incoming, num_units, dropout_p, g_i=Gate(name='ingate'), g_f=Gate(name='forgetgate'),
g_c=Gate(W_cell=None, nonlinearity=tanh, name='cell'), g_o=Gate(name='outgate'),
nonlinearity=tanh, cell_init=Constant(0.), hid_init=Constant(0.), peepholes=True,
grad_clipping=0, **kwargs
):
self.num_units = num_units
self.peepholes = peepholes
self.grad_clipping = grad_clipping
self.nonlinearity = identity if nonlinearity is None else nonlinearity
num_inputs = np.prod(incoming.output_shape[1:])
self.dropout = BernoulliDropout(InputLayer((incoming.output_shape[0], num_units)), p=dropout_p)
super().__init__(
{'x': incoming}, {'cell': cell_init, 'output': hid_init, 'dropout': self.dropout}, **kwargs
)
self.W_xi, self.W_hi, self.b_i, self.nl_i = g_i.add_params_to(self, num_inputs, num_units)
self.W_xf, self.W_hf, self.b_f, self.nl_f = g_f.add_params_to(self, num_inputs, num_units)
self.W_xc, self.W_hc, self.b_c, self.nl_c = g_c.add_params_to(self, num_inputs, num_units)
self.W_xo, self.W_ho, self.b_o, self.nl_o = g_o.add_params_to(self, num_inputs, num_units)
if self.peepholes:
self.W_ci = self.add_param(g_i.W_cell, (num_units,), name='W_ci')
self.W_cf = self.add_param(g_f.W_cell, (num_units,), name='W_cf')
self.W_co = self.add_param(g_o.W_cell, (num_units,), name='W_co')
def get_output_shape_for(self, input_shapes):
return {
'cell': (input_shapes['x'][0], self.num_units),
'output': (input_shapes['x'][0], self.num_units),
}
def precompute_for(self, inputs, **kwargs):
x = inputs['x']
if x.ndim > 3:
x = T.flatten(x, 3)
return {
'xi': T.dot(x, self.W_xi) + self.b_i,
'xf': T.dot(x, self.W_xf) + self.b_f,
'xc': T.dot(x, self.W_xc) + self.b_c,
'xo': T.dot(x, self.W_xo) + self.b_o,
}
def get_output_for(self, inputs, precompute_input=False, **kwargs):
if not precompute_input:
raise NotImplementedError
c_tm1, h_tm1, dropout_ = inputs['cell'], inputs['output'], inputs['dropout']
i_t = inputs['xi'] + T.dot(h_tm1, self.W_hi)
f_t = inputs['xf'] + T.dot(h_tm1, self.W_hf)
c_t = inputs['xc'] + T.dot(h_tm1, self.W_hc)
o_t = inputs['xo'] + T.dot(h_tm1, self.W_ho)
if self.grad_clipping:
i_t = theano.gradient.grad_clip(i_t, -self.grad_clipping, self.grad_clipping)
f_t = theano.gradient.grad_clip(f_t, -self.grad_clipping, self.grad_clipping)
c_t = theano.gradient.grad_clip(c_t, -self.grad_clipping, self.grad_clipping)
o_t = theano.gradient.grad_clip(o_t, -self.grad_clipping, self.grad_clipping)
if self.peepholes:
i_t += c_tm1 * self.W_ci
f_t += c_tm1 * self.W_cf
i_t = self.nl_i(i_t)
f_t = self.nl_f(f_t)
c_t = self.nl_c(c_t)
c_t = f_t * c_tm1 + i_t * c_t
c_t *= dropout_
if self.peepholes:
o_t += c_t * self.W_co
o_t = self.nl_o(o_t)
h_t = o_t * self.nonlinearity(c_t)
return {'cell': c_t, 'output': h_t}
lasagne.random.get_rng().seed(1234)
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = LSTMDropoutMCLSCell(cell_inp, n_units, dropout_p=0.5)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec, deterministic=False).eval({l_inp.input_var: x_in}))
def lstm_dropout_gal():
'''
References
----------
.. [1] Gal, Yarin: "A Theoretically Grounded Application of Dropout in Recurrent Neural Networks"
'''
class LSTMDropoutGalCell(CellLayer):
def __init__(
self, incoming, num_units, dropout_p, g_i=Gate(name='ingate'), g_f=Gate(name='forgetgate'),
g_c=Gate(W_cell=None, nonlinearity=tanh, name='cell'), g_o=Gate(name='outgate'),
nonlinearity=tanh, cell_init=init.Constant(0.), hid_init=init.Constant(0.), peepholes=True,
grad_clipping=0, **kwargs
):
self.num_units = num_units
self.peepholes = peepholes
self.grad_clipping = grad_clipping
self.nonlinearity = identity if nonlinearity is None else nonlinearity
num_inputs = np.prod(incoming.output_shape[1:])
self.dropout = BernoulliDropout(InputLayer((incoming.output_shape[0], 4, num_units)), p=dropout_p)
super().__init__(
{'x': incoming}, {'cell': cell_init, 'output': hid_init, 'dropout': self.dropout}, **kwargs
)
self.W_xi, self.W_hi, self.b_i, self.nl_i = g_i.add_params_to(self, num_inputs, num_units)
self.W_xf, self.W_hf, self.b_f, self.nl_f = g_f.add_params_to(self, num_inputs, num_units)
self.W_xc, self.W_hc, self.b_c, self.nl_c = g_c.add_params_to(self, num_inputs, num_units)
self.W_xo, self.W_ho, self.b_o, self.nl_o = g_o.add_params_to(self, num_inputs, num_units)
if self.peepholes:
self.W_ci = self.add_param(g_i.W_cell, (num_units,), name='W_ci')
self.W_cf = self.add_param(g_f.W_cell, (num_units,), name='W_cf')
self.W_co = self.add_param(g_o.W_cell, (num_units,), name='W_co')
def get_output_shape_for(self, input_shapes):
return {
'cell': (input_shapes['x'][0], self.num_units),
'output': (input_shapes['x'][0], self.num_units),
}
def precompute_for(self, inputs, **kwargs):
x = inputs['x']
if x.ndim > 3:
x = T.flatten(x, 3)
return {
'xi': T.dot(x, self.W_xi) + self.b_i,
'xf': T.dot(x, self.W_xf) + self.b_f,
'xc': T.dot(x, self.W_xc) + self.b_c,
'xo': T.dot(x, self.W_xo) + self.b_o,
}
def get_output_for(self, inputs, precompute_input=False, **kwargs):
if not precompute_input:
raise NotImplementedError
c_tm1, h_tm1, dropout_ = inputs['cell'], inputs['output'], inputs['dropout']
i_t = inputs['xi'] + T.dot(h_tm1 * dropout_[:, 0], self.W_hi)
f_t = inputs['xf'] + T.dot(h_tm1 * dropout_[:, 1], self.W_hf)
c_t = inputs['xc'] + T.dot(h_tm1 * dropout_[:, 2], self.W_hc)
o_t = inputs['xo'] + T.dot(h_tm1 * dropout_[:, 3], self.W_ho)
if self.grad_clipping:
i_t = theano.gradient.grad_clip(i_t, -self.grad_clipping, self.grad_clipping)
f_t = theano.gradient.grad_clip(f_t, -self.grad_clipping, self.grad_clipping)
c_t = theano.gradient.grad_clip(c_t, -self.grad_clipping, self.grad_clipping)
o_t = theano.gradient.grad_clip(o_t, -self.grad_clipping, self.grad_clipping)
if self.peepholes:
i_t += c_tm1 * self.W_ci
f_t += c_tm1 * self.W_cf
i_t = self.nl_i(i_t)
f_t = self.nl_f(f_t)
c_t = self.nl_c(c_t)
c_t = f_t * c_tm1 + i_t * c_t
if self.peepholes:
o_t += c_t * self.W_co
o_t = self.nl_o(o_t)
h_t = o_t * self.nonlinearity(c_t)
return {'cell': c_t, 'output': h_t}
lasagne.random.get_rng().seed(1234)
n_batch, seq_len, n_features = 2, 3, 4
n_units = 5
l_inp = InputLayer((n_batch, seq_len, n_features))
cell_inp = InputLayer((n_batch, n_features))
cell = LSTMDropoutGalCell(cell_inp, n_units, dropout_p=0.5)['output']
l_rec = RecurrentContainerLayer({cell_inp: l_inp}, cell)
x_in = np.random.random((n_batch, seq_len, n_features)).astype('float32')
print(helper.get_output(l_rec, deterministic=False).eval({l_inp.input_var: x_in}))
def main():
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('proc_name')
args = arg_parser.parse_args()
globals()[args.proc_name]()
if __name__ == '__main__':
main()