-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
395 lines (372 loc) · 16.8 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#include "Kinect.h"
#include "Segmentation_SLIC.h"
#include "SuperpixelSegmentation.h"
#include "DepthAdaptiveSuperpixel.h"
#include "JointBilateralFilter.h"
#include "DimensionConvertor.h"
#include <time.h>
#include "NormalEstimation\NormalMapGenerator.h"
#include "NormalAdaptiveSuperpixel.h"
#include "ArrayBuffer\Buffer2D.h"
#include "LabelEquivalenceSeg.h"
#include <opencv2\opencv.hpp>
#include "VisualizeSurfaceMesh.h"
#include <opencv2\gpu\gpu.hpp>
#include "Projection_GPU.h"
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include "EdgeRefinedSuperpixel.h"
#include "MarkovRandomField.h"
float color_sigma = 250.0f;
float spatial_sigma = 15.0f;
float depth_sigma = 20.0f;
float normal_sigma = 80.0f;
int iteration = 5;
const int sp_rows = 10;
const int sp_cols = 20;
void colorChange(int change, void* dummy){
color_sigma = change;
}
void spatialChange(int change, void* dummy){
spatial_sigma = change;
}
void depthChange(int change, void* dummy){
depth_sigma = change;
}
void normalChange(int change, void* dummy){
normal_sigma = change;
}
//int main(int argc, char** argv) {
// //cv::gpu::DeviceInfo di(cv::gpu::getDevice());
// //std::cout << di.name() << std::endl;
//
// try{
//
// /*cv::Mat input = cv::imread("image.jpg", 1);
// cv::gpu::GpuMat input_gpu(input.rows, input.cols, CV_8UC3);
// input_gpu.upload(input);
// cv::gpu::GpuMat resized_gpu(input.rows*2, input.cols*2, CV_8UC3);
// cv::gpu::resize(input_gpu, resized_gpu, cv::Size(input.cols*2, input.rows*2), cv::INTER_LINEAR);
// cv::Mat resized(input.rows*2, input.cols*2, CV_8UC3);
// resized_gpu.download(resized);
// cv::imshow("resized", resized);
// cv::waitKey();
// */
// ///////////////////////////
// VisualizeSurfaceMesh Visualize;
// Visualize.Process(argc, argv);
// }
// catch (std::exception& ex) {
// std::cout << ex.what() << std::endl;
// char end_key;
// for(;;)
// end_key = cv::waitKey(10);
// }
// return 0;
//}
cv::VideoWriter segment_sp_writer;
cv::VideoWriter random_sp_writer;
cv::VideoWriter segment_ndsp_writer;
cv::VideoWriter random_ndsp_writer;
cv::VideoWriter normal_writer;
cv::VideoWriter seg_normal_writer;
void checkKey(NormalMapGenerator& nmg, char key){
switch(key){
case '\033':
segment_sp_writer.release();
random_sp_writer.release();
segment_ndsp_writer.release();
random_ndsp_writer.release();
normal_writer.release();
seg_normal_writer.release();
exit(1);
break;
case 'q':
exit(0);
break;
case '1':
nmg.setNormalEstimationMethods(nmg.BILATERAL);
printf("NormalEstimation method: BILATERAL\n");
break;
case '2':
nmg.setNormalEstimationMethods(nmg.SDC);
printf("NormalEstimation method: SDC\n");
break;
case '3':
nmg.setNormalEstimationMethods(nmg.CM);
printf("NormalEstimation method: CM\n");
break;
default:
break;
}
return;
}
int main(){
segment_sp_writer = cv::VideoWriter::VideoWriter("segment_sp.avi", CV_FOURCC('X','V','I','D'), 3.0, cv::Size(Kinect::Width, Kinect::Height));
random_sp_writer = cv::VideoWriter::VideoWriter("random_sp.avi", CV_FOURCC('X','V','I','D'), 3.0, cv::Size(Kinect::Width, Kinect::Height));
segment_ndsp_writer = cv::VideoWriter::VideoWriter("segment_ndsp.avi", CV_FOURCC('X','V','I','D'), 3.0, cv::Size(Kinect::Width, Kinect::Height));
random_ndsp_writer = cv::VideoWriter::VideoWriter("random_ndsp.avi", CV_FOURCC('X','V','I','D'), 3.0, cv::Size(Kinect::Width, Kinect::Height));
normal_writer = cv::VideoWriter::VideoWriter("normal.avi", CV_FOURCC('X','V','I','D'), 3.0, cv::Size(Kinect::Width, Kinect::Height));
seg_normal_writer = cv::VideoWriter::VideoWriter("seg_nromal.avi", CV_FOURCC('X','V','I','D'), 3.0, cv::Size(Kinect::Width, Kinect::Height));
SingleKinect kinect;
Segmentation_SLIC SLIC(Kinect::Width, Kinect::Height);
SLIC.SetParametor(240, 30.0, 10);
cv::Mat_<cv::Vec3b> lab = cv::imread("lab.jpg", 1);
cv::Mat_<cv::Vec3b> lab2;
lab.copyTo(lab2);
for(int y=0; y<lab.rows; y++){
for(int x=0; x<lab.cols; x++){
lab2.at<cv::Vec3b>(y, lab.cols-x) = lab.at<cv::Vec3b>(y, x);
}
}
//cv::imwrite("lab_inv.bmp", lab2);
//SLIC.segmentImage_SLIC(lab2);
//SLIC.VisualizeSegmentedImage();
//cv::imwrite("lab_segment.bmp", SLIC.getRandomImg());
SuperpixelSegmentation Seg(Kinect::Width, Kinect::Height);
Seg.SetParametor(sp_rows, sp_cols);
DepthAdaptiveSuperpixel DASP(Kinect::Width, Kinect::Height);
DASP.SetParametor(sp_rows, sp_cols, kinect.GetIntrinsicMatrix());
NormalAdaptiveSuperpixel NASP(Kinect::Width, Kinect::Height);
NASP.SetParametor(sp_rows, sp_cols, kinect.GetIntrinsicMatrix());
//Visualizer visual(Kinect::Width, Kinect::Height);
cv::Mat_<int> label(Kinect::Height, Kinect::Width);
clock_t start;
double prev, mine, jbf;
float* inputDepth_Host, *inputDepth_Device, *bufferDepth_Host, *bufferDepth_Device;
float3* points_Host, *points_Device, *refinedPoints_Device, *refinedPoints_Host;
cudaMallocHost(&bufferDepth_Host, sizeof(float)*Kinect::Width*Kinect::Height);
cudaMalloc(&bufferDepth_Device, sizeof(float)*Kinect::Width*Kinect::Height);
cudaMallocHost(&inputDepth_Host, sizeof(float)*Kinect::Width*Kinect::Height);
cudaMalloc(&inputDepth_Device, sizeof(float)*Kinect::Width*Kinect::Height);
cudaMallocHost(&inputDepth_Host, sizeof(float)*Kinect::Width*Kinect::Height);
cudaMalloc(&inputDepth_Device, sizeof(float)*Kinect::Width*Kinect::Height);
cudaMallocHost(&points_Host, sizeof(float3)*Kinect::Width*Kinect::Height);
cudaMalloc(&points_Device, sizeof(float3)*Kinect::Width*Kinect::Height);
cudaMallocHost(&points_Host, sizeof(float3)*Kinect::Width*Kinect::Height);
cudaMalloc(&points_Device, sizeof(float3)*Kinect::Width*Kinect::Height);
cudaMallocHost(&refinedPoints_Host, sizeof(float3)*Kinect::Width*Kinect::Height);
cudaMalloc(&refinedPoints_Device, sizeof(float3)*Kinect::Width*Kinect::Height);
//array buffer
Buffer2D Buffer(Kinect::Width, Kinect::Height);
//joint bilateral filter
JointBilateralFilter JBF(Kinect::Width, Kinect::Height);
cv::gpu::GpuMat Color_Device = cv::gpu::createContinuous(Kinect::Height, Kinect::Width, CV_8UC3);
//cv::gpu::GpuMat Color_Device(Kinect::Height, Kinect::Width, CV_8UC3);
//dimension convertor
DimensionConvertor convertor;
convertor.setCameraParameters(kinect.GetIntrinsicMatrix(), Kinect::Width, Kinect::Height);
//normal generator
NormalMapGenerator nmg(Kinect::Width, Kinect::Height);
nmg.setNormalEstimationMethods(nmg.BILATERAL);
//labeling
LabelEquivalenceSeg spMerger(Kinect::Width, Kinect::Height);
//projection
Projection_GPU Projector(Kinect::Width, Kinect::Height, kinect.GetIntrinsicMatrix());
//visualize
pcl::PointCloud<pcl::PointXYZRGB>::Ptr input (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr upsampled (new pcl::PointCloud<pcl::PointXYZRGB>);
//edge refine
EdgeRefinedSuperpixel ERS(Kinect::Width, Kinect::Height);
//markov random field
MarkovRandomField MRF(Kinect::Width, Kinect::Height);
cv::Mat_<cv::Vec3b> normalImg(Kinect::Height, Kinect::Width);
while(true){
kinect.UpdateContextAndData();
//start = clock();
//label = SLIC.segmentImage_SLIC(kinect.GetColorImage());
//prev = (double)((clock() - start)/*/1000.0*/);
//std::cout << "prev: "<<prev<<std::endl;
//SLIC.VisualizeSegmentedImage();
//visual.display(kinect.GetColorImage(), label, "seg");
Color_Device.upload(kinect.GetColorImage());
//depth input
for(int y=0; y<Kinect::Height; y++){
for(int x=0; x<Kinect::Width; x++){
inputDepth_Host[y*Kinect::Width+x] = (float)(*kinect.GetDepthMD())(x, y);
}
}
cudaMemcpy(inputDepth_Device, inputDepth_Host, sizeof(float)*Kinect::Width*Kinect::Height, cudaMemcpyHostToDevice);
//joint bilateral filter
JBF.Process(inputDepth_Device, Color_Device);
//markov random field
MRF.Process(inputDepth_Device, Color_Device);
//convert to realworld
convertor.projectiveToReal(JBF.getFiltered_Device(), points_Device);
//Superpixel Segmentation
Seg.Process(JBF.getSmoothImage_Device(), 180.0f, 3.0f, 5);
//Depth Adaptive Superpixels
DASP.Segmentation(JBF.getSmoothImage_Device(), points_Device, 0.0f, 10.0f, 200.0f, 5);
//cv::imshow("DASP", DASP.getSegmentedImage(kinect.GetDepthImage(), NASP.Line));
//cv::imshow("SP", Seg.getSegmentedImage(kinect.GetColorImage(), NASP.Line));
//cv::imshow("depth", kinect.GetDepthImage());
//ERS.EdgeRefining(Seg.getLabelDevice(), DASP.getLabelDevice(), inputDepth_Device, Color_Device);
//cv::imshow("Refine", ERS.getSegmentedImage(kinect.getMaxDepth()));
//MRF.visualize(inputDepth_Host);
//convert to realworld
//convertor.projectiveToReal(ERS.getRefinedDepth_Device(), refinedPoints_Device);
convertor.projectiveToReal(JBF.getFiltered_Device(), refinedPoints_Device);
//cudaMemcpy(refinedPoints_Host, refinedPoints_Device, sizeof(float3)*Kinect::Width*Kinect::Height, cudaMemcpyDeviceToHost);
//cudaMemcpy(points_Host, points_Device, sizeof(float3)*Kinect::Width*Kinect::Height, cudaMemcpyDeviceToHost);
//for(int y=0; y<Kinect::Height; y++){
// for(int x=0; x<Kinect::Width; x++){
// std::cout << "points_Host "<< points_Host[y*Kinect::Width+x].x<<", "<<points_Host[y*Kinect::Width+x].y<<", "<<points_Host[y*Kinect::Width+x].z<<std::endl;
// std::cout << "refinedPoints_Host "<< refinedPoints_Host[y*Kinect::Width+x].x<<", "<<refinedPoints_Host[y*Kinect::Width+x].y<<", "<<refinedPoints_Host[y*Kinect::Width+x].z<<std::endl;
// }
//}
//Normal estimation
nmg.generateNormalMap(points_Device);
NASP.Segmentation(JBF.getSmoothImage_Device(), points_Device, nmg.getNormalMap(), color_sigma, spatial_sigma, depth_sigma, normal_sigma, iteration);
////refine edge
ERS.EdgeRefining(Seg.getLabelDevice(), NASP.getLabelDevice(), JBF.getFiltered_Device(), Color_Device);
cv::imshow("Refine", ERS.getSegmentedImage(kinect.getMaxDepth()));
convertor.projectiveToReal(ERS.getRefinedDepth_Device(), refinedPoints_Device);
for(int y=0; y<Kinect::Height; y++){
for(int x=0; x<Kinect::Width; x++){
int label = ERS.getRefinedLabels_Host()[y*Kinect::Width+x];
if(label != -1){
//std::cout << NASP.getNormalsHost()[label].x << ", "<<NASP.getNormalsHost()[label].y<<", "<<NASP.getNormalsHost()[label].z<<std::endl;
normalImg.at<cv::Vec3b>(y, x).val[0]= (unsigned char)(255*(NASP.getNormalsHost()[label].x+1.0)/2);
normalImg.at<cv::Vec3b>(y, x).val[1]= (unsigned char)(255*(NASP.getNormalsHost()[label].y+1.0)/2);
normalImg.at<cv::Vec3b>(y, x).val[2]= (unsigned char)(255*(NASP.getNormalsHost()[label].z+1.0)/2);
}
else
normalImg.at<cv::Vec3b>(y, x) = cv::Vec3b(0, 0, 0);
}
}
cv::imshow("segmented image", NASP.getSegmentedImage(kinect.GetColorImage(), NASP.Line));
segment_ndsp_writer << NASP.getSegmentedImage(kinect.GetColorImage(), NASP.Line);
cv::imshow("random image", NASP.getRandomColorImage());
random_ndsp_writer << NASP.getRandomColorImage();
//cv::imshow("cluster normal", NASP.getNormalImg());
//cv::imshow("cluster normal", normalImg);
//seg_normal_writer << NASP.getNormalImg();
cv::imshow("normal", nmg.getNormalImg());
normal_writer <<nmg.getNormalImg();
//labeling
spMerger.labelImage(NASP.getNormalsDevice(), NASP.getLabelDevice(), NASP.getCentersDevice(), NASP.getNormalsVarianceDevice(), (Kinect::Width/sp_rows)*(Kinect::Height/sp_cols));
spMerger.viewSegmentResult();
cv::imshow("normal_label", spMerger.getNormalImg());
char key = cv::waitKey(1);
checkKey(nmg, key);
if(key == 'c'){
if(color_sigma >=5.0f)
color_sigma -= 5.0f;
std::cout << "color_sigma: "<<color_sigma << std::endl;
}
if(key == 'C'){
color_sigma += 5.0f;
std::cout << "color_sigma: "<<color_sigma << std::endl;
}
if(key == 's'){
if(spatial_sigma >=5.0f)
spatial_sigma -= 5.0f;
std::cout << "spatial_sigma: "<<spatial_sigma << std::endl;
}
if(key == 'S'){
spatial_sigma += 5.0f;
std::cout << "spatial_sigma: "<<spatial_sigma << std::endl;
}
if(key == 'd'){
if(depth_sigma >=5.0f)
depth_sigma -= 5.0f;
std::cout << "depth_sigma: "<<depth_sigma << std::endl;
}
if(key == 'D'){
depth_sigma += 5.0f;
std::cout << "depth_sigma: "<<depth_sigma << std::endl;
}
if(key == 'n'){
if(normal_sigma >=5.0f)
normal_sigma -= 5.0f;
std::cout << "normal_sigma: "<<normal_sigma << std::endl;
}
if(key == 'N'){
normal_sigma += 5.0f;
std::cout << "normal_sigma: "<<normal_sigma << std::endl;
}
if(key == 'i'){
if(iteration >= 2)
iteration--;
std::cout << "iteration: "<<iteration << std::endl;
}
if(key == 'I'){
iteration++;
std::cout << "iteration: "<<iteration << std::endl;
}
//GUI
cv::createTrackbar("color_sigma", "random image", NULL, 400, colorChange);
cv::setTrackbarPos("color_sigma", "random image", color_sigma);
cv::createTrackbar("spatial_sigma", "random image", NULL, 100, spatialChange);
cv::setTrackbarPos("spatial_sigma", "random image", spatial_sigma);
cv::createTrackbar("depth_sigma", "random image", NULL, 200, depthChange);
cv::setTrackbarPos("depth_sigma", "random image", depth_sigma);
cv::createTrackbar("normal_sigma", "random image", NULL, 200, normalChange);
cv::setTrackbarPos("normal_sigma", "random image", normal_sigma);
if(key == 'p'){
//for(int y=0; y<Kinect::Height; y++){
// for(int x=0; x<Kinect::Width; x++){
// std::cout << "label: "<<spMerger.getMergedClusterLabel_Host()[y*Kinect::Width+x] <<std::endl;
// std::cout << "x, y, z, w "<<spMerger.getMergedClusterND_Host()[y*Kinect::Width+x].x << ", "
// <<spMerger.getMergedClusterND_Host()[y*Kinect::Width+x].y <<", "
// <<spMerger.getMergedClusterND_Host()[y*Kinect::Width+x].z << ", "
// <<spMerger.getMergedClusterND_Host()[y*Kinect::Width+x].w<<std::endl;
// }
//}
//save image
cv::imwrite("input_image.bmp", kinect.GetColorImage());
cv::imwrite("random_image.bmp", NASP.getRandomColorImage());
cv::imwrite("normal_image.bmp", nmg.getNormalImg());
cv::imwrite("label_image.bmp", spMerger.getSegmentResult());
//projection
Projector.PlaneProjection(spMerger.getMergedClusterND_Device(), spMerger.getMergedClusterLabel_Device(), spMerger.getMergedClusterVariance_Device(), points_Device);
//Projector.PlaneProjection(NASP.getNormalsDevice(), NASP.getCentersDevice(), NASP.getLabelDevice(), NASP.getNormalsVarianceDevice(), points_Device);
float3* planarPoints_Host;
cudaMallocHost(&planarPoints_Host, sizeof(float3)*Kinect::Width*Kinect::Height);
cudaMemcpy(points_Host, points_Device, sizeof(float3)*Kinect::Width*Kinect::Height, cudaMemcpyDeviceToHost);
cudaMemcpy(planarPoints_Host, Projector.GetPlaneFitted3D_Device(), sizeof(float3)*Kinect::Width*Kinect::Height, cudaMemcpyDeviceToHost);
for(int y=0; y<Kinect::Height; y++){
for(int x=0; x<Kinect::Width; x++){
pcl::PointXYZRGB point;
if(points_Host[y*Kinect::Width+x].z> 0.0f){
point.x = points_Host[y*Kinect::Width+x].x/1000.0f;
point.y = points_Host[y*Kinect::Width+x].y/1000.0f;
point.z = -points_Host[y*Kinect::Width+x].z/1000.0f;
point.r = (unsigned char)kinect.GetColorImage().at<cv::Vec3b>(y, x).val[2];
point.g = (unsigned char)kinect.GetColorImage().at<cv::Vec3b>(y, x).val[1];
point.b = (unsigned char)kinect.GetColorImage().at<cv::Vec3b>(y, x).val[0];
input->push_back(point);
}
if(planarPoints_Host[y*Kinect::Width+x].z> 50.0f && planarPoints_Host[y*Kinect::Width+x].z< 5000.0f){
point.x = planarPoints_Host[y*Kinect::Width+x].x/1000.0f;
point.y = planarPoints_Host[y*Kinect::Width+x].y/1000.0f;
point.z = -planarPoints_Host[y*Kinect::Width+x].z/1000.0f;
point.r = (unsigned char)kinect.GetColorImage().at<cv::Vec3b>(y, x).val[2];
point.g = (unsigned char)kinect.GetColorImage().at<cv::Vec3b>(y, x).val[1];
point.b = (unsigned char)kinect.GetColorImage().at<cv::Vec3b>(y, x).val[0];
upsampled->push_back(point);
}
}
}
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer_input (new pcl::visualization::PCLVisualizer ("Input Viewer"));
viewer_input->initCameraParameters ();
pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb_input(input);
viewer_input->addPointCloud<pcl::PointXYZRGB> (input, rgb_input, "input");
viewer_input->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1.5, "input");
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer_upsampled(new pcl::visualization::PCLVisualizer ("Upsample Viewer"));
viewer_upsampled->initCameraParameters ();
pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb_upsampled(upsampled);
viewer_upsampled->addPointCloud<pcl::PointXYZRGB> (upsampled, rgb_upsampled, "upsampled");
viewer_upsampled->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1.5, "upsampled");
bool ShouldRun = true;
while (ShouldRun) {
viewer_input->spinOnce (100);
viewer_upsampled->spinOnce (100);
boost::this_thread::sleep (boost::posix_time::microseconds (100000));
}
}
}
return 0;
}