We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi,stormy-ua Many thanks to the project.I've run the example successfuly. Here is my question: I have two inputs as following python script.
import tensorflow as tf import numpy as np export_dir = 'tmp/saved_model_2' builder = tf.saved_model.builder.SavedModelBuilder(export_dir=export_dir) with tf.Graph().as_default(), tf.Session().as_default() as sess: x1 = tf.placeholder(shape=(2, 3), dtype=tf.float32, name='x1') x2 = tf.placeholder(shape=(2, 3), dtype=tf.float32, name='x2') y = tf.Variable(np.identity(3), dtype=tf.float32) z = tf.add(tf.matmul(x1, y, name='z'),tf.matmul(x2, y, name='z') ) tf.global_variables_initializer().run() zval = z.eval(feed_dict={x1: np.random.randn(2, 3),x2: np.random.randn(2, 3)}) print(zval) x1_proto_info = tf.saved_model.utils.build_tensor_info(x1) x2_proto_info = tf.saved_model.utils.build_tensor_info(x2) z_proto_info = tf.saved_model.utils.build_tensor_info(z) prediction_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={'x1': x1_proto_info,'x2': x2_proto_info}, outputs={'z': z_proto_info}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: prediction_signature }) builder.save()
Such usage is wrong. Would you please check it? Thanks a lot.
input1Array <- Try { Array.range(0, 6).map(_.toFloat) } _ = println(s"input1 array = ${shows(input1Array)}") input2Array <- Try { Array.range(0, 6).map(_.toFloat) } _ = println(s"input2 array = ${shows(input2Array)}") inputArray <- Try {input1Array ++ input2Array} _ = println(s"input array = ${shows(inputArray)}") _ <- (use(serving.tensor(inputArray.slice(0,5),shape = List(2,3))),use(serving.tensor(inputArray.slice(0,5),shape = List(2,3)))){ (input1Tensor,input2Tensor) => for { input1Def <- Try { signature.inputs("x1") } input2Def <- Try { signature.inputs("x2") } output1Def <- Try { signature.outputs("z") } output1Array <- serving.eval[Array[Array[Float]]](model, output1Def, Map(input1Def -> input1Tensor,input2Def->input2Tensor)) _ = println(s"output: ${shows(output1Array)}") } yield () }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi,stormy-ua
Many thanks to the project.I've run the example successfuly. Here is my question:
I have two inputs as following python script.
Such usage is wrong. Would you please check it? Thanks a lot.
The text was updated successfully, but these errors were encountered: