-
Notifications
You must be signed in to change notification settings - Fork 2
/
classifier.py
153 lines (139 loc) · 4.91 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sys
import json
import torch
import os
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
# Load the saved model and tokenizer
# MODEL_PATH = "/app/model/game_text_classifier_model"
# TOKENIZER_PATH = "/app/model/game_text_classifier_model"
MODEL_PATH = "output/diplomatic_text_classifier_model"
TOKENIZER_PATH = "output/diplomatic_text_classifier_model"
# Check if the model and tokenizer files exist
if not os.path.exists(MODEL_PATH):
raise FileNotFoundError(f"Model directory not found at {MODEL_PATH}")
if not os.path.exists(os.path.join(MODEL_PATH, "config.json")):
raise FileNotFoundError(f"Model config file not found in {MODEL_PATH}")
if not os.path.exists(os.path.join(TOKENIZER_PATH, "tokenizer_config.json")):
raise FileNotFoundError(f"Tokenizer config file not found in {TOKENIZER_PATH}")
# Load model and tokenizer
try:
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH, local_files_only=True, ignore_mismatched_sizes=True)
tokenizer = DistilBertTokenizer.from_pretrained(TOKENIZER_PATH, local_files_only=True)
except Exception as e:
print(f"Error loading model or tokenizer: {e}")
sys.exit(1)
# Define label mapping
id_to_label = {
0: "cooperation",
1: "negotiation",
2: "alliance_proposal",
3: "threat",
4: "intimidation",
5: "compromise",
6: "peace_offer",
7: "declaration_of_war",
8: "ceasefire_request",
9: "trade_proposal",
10: "intelligence_sharing",
11: "diplomatic_pressure",
12: "sanctions_threat",
13: "mediation_offer",
14: "neutrality_declaration",
15: "territorial_claim",
16: "diplomatic_protest",
17: "apology",
18: "praise_or_commendation",
19: "criticism",
20: "request_for_aid",
21: "offer_of_assistance",
22: "ultimatum",
23: "non_aggression_pact",
24: "treaty_proposal",
25: "diplomatic_recognition",
26: "severance_of_relations",
27: "espionage_accusation",
28: "denial_of_accusations",
29: "call_for_unity",
30: "appeal_to_international_law",
31: "economic_cooperation",
32: "cultural_exchange",
33: "military_cooperation",
34: "humanitarian_aid_offer",
35: "request_for_mediation",
36: "diplomatic_immunity_invocation",
37: "extradition_request",
38: "asylum_offer",
39: "propaganda",
40: "disinformation",
41: "confidence_building_measure",
42: "arms_control_proposal",
43: "environmental_cooperation",
44: "technology_transfer",
45: "diplomatic_demarche",
46: "formal_complaint",
47: "request_for_clarification",
48: "expression_of_concern",
49: "congratulatory_message",
50: "condolences",
51: "neutral_statement",
52: "procedural_communication",
53: "information_request",
54: "summit_proposal",
55: "arbitration_request",
56: "border_dispute_resolution",
57: "diplomatic_crisis_management",
58: "economic_sanctions_announcement",
59: "humanitarian_corridor_request",
60: "peacekeeping_mission_proposal",
61: "condemnation",
}
def predict_single(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
predicted_class_id = outputs.logits.argmax().item()
return id_to_label[predicted_class_id]
def predict_batch(texts):
results = []
for text in texts:
label = predict_single(text)
results.append({"text": text, "label": label})
return results
if __name__ == "__main__":
try:
# Read JSON input from stdin
input_json = sys.stdin.read()
try:
input_texts = json.loads(input_json)
except json.JSONDecodeError:
print("Error: Invalid JSON input")
sys.exit(1)
if not isinstance(input_texts, list):
print("Error: Input must be a JSON array of strings")
sys.exit(1)
predictions = predict_batch(input_texts)
# Handle broken pipe error when printing predictions
try:
for prediction in predictions:
print(json.dumps(prediction, ensure_ascii=False))
except BrokenPipeError:
# Python flushes standard streams on exit; redirect remaining output
# to devnull to avoid another BrokenPipeError at shutdown
devnull = os.open(os.devnull, os.O_WRONLY)
os.dup2(devnull, sys.stdout.fileno())
sys.exit(1) # Python exits with error code 1 on EPIPE
except KeyboardInterrupt:
sys.exit(0)
except Exception as e:
print(f"Error: {str(e)}", file=sys.stderr)
sys.exit(1)
finally:
# Explicitly flush and close stdout to avoid BrokenPipeError during cleanup
try:
sys.stdout.flush()
except BrokenPipeError:
pass
try:
sys.stdout.close()
except BrokenPipeError:
pass