-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchi2_cumulative_test.py
57 lines (45 loc) · 1.67 KB
/
chi2_cumulative_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# A test of my tools :
# given the file which contains various measurements of quasars, each line stands
# for a separate day, with exactly four observations per night
# calculate the average value of four measurements,
# and thus calculate chi-squared for those days
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import chi2
data = np.loadtxt('chi2testN4.dat')
err = data[:,0]
mag1 = data[:,1]
mag2 = data[:,2]
mag3 = data[:,3]
mag4 = data[:,4]
avg_mags = np.zeros_like(err).astype(float)
avg_err = np.zeros_like(err).astype(float)
chisq = np.zeros_like(err).astype(float)
for i in range(len(err)):
avg = np.average(data[i,1:4])
avg_mags[i] = avg
w = 1.0 / (err[i] * err[i])
avg_err[i] = err[i] / np.sqrt(3.0)
chisq[i] = w * ( (mag1[i] - avg)**2.0 + (mag2[i] - avg)**2.0 + (mag3[i] - avg)**2.0 + (mag4[i] - avg)**2.0 )
# chi-sq cumulative lin-log
N_obs=[4]
print 'Plotting chi-sq cumulative'
for number in N_obs :
plt.clf()
#zeromask = (chisq != 0.0) # avoid values of zero
logchisq = np.log10(chisq)
plt.hist(logchisq,bins=200, normed=True, cumulative=True)
xmax = np.max(logchisq)
#plt.xlim((0,0.5*xmax))
plt.xlim((-2,2))
plt.title('Chi-sq cumulative test distribution, N=4')
plt.xlabel('log(chi-squared)')
plt.ylabel('Probability')
fname='test_chisq_cum_N_linlog_'+str(number)+'.png'
# overplot theoretical cdf curve for k=3
df=3 # their name for k parameter , k = N-1
x = np.linspace(chi2.ppf(0.0001,df),chi2.ppf(0.9999, df), 100)
# np.linspace(start,stop,number_of_samplings)
plt.plot(np.log10(x), chi2.cdf(x, df),'r-', lw=5, alpha=0.6, label='chi2 cdf')
plt.xlim((-2,2))
plt.savefig(fname)