-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjavelin_chain_retrieve_stars.py
128 lines (91 loc) · 3.75 KB
/
javelin_chain_retrieve_stars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 10 17:01:19 2014
@author: suberlak
A new program that does not require Javelin to run
Loading chains bit .
REQUIREMENTS:
Before running you need to update the chain list file (in terminal)
NOTE:
The chain name has to have the form
chain='ch_xxxxxxxxx.dat_chain.dat'
because we are taking the star name from chain[3:-14]
OUTPUT:
A text file like javelin_chain_results_new8_sigma_tau.txt , with columns
QSO_name sigma_l, sigma_m, sigma_h, tau_l, tau_m, tau_h
222857.83-010734.8 0.147325389744 0.178587132035 0.227150026128 70.2886684856 116.70354396 209.732145982
NOTE :
THE SCRIPT TAKES QUASAR NAME FROM THE INPUT FILE TO IDENTIFY A CHAIN .
FOR SDSS QSO'S IT IS quasar_name = files[j][5:]
BUT FOR CRTS IT IS DIFFERENT !!!
"""
import numpy as np
dir_choice = ['stars_CRTS_err_rms_chains/','stars_CRTS_err_w_chains/','stars_CRTS_analysis/' ]
err = 1 # or 1
if err ==0 :
err_txt = 'err_rms'
else:
err_txt = 'err_w'
dir_in = dir_choice[err]
dir_out = dir_choice[2]
'''
NOTE : must make a chain_list_ ... .ls file before running the program!
in stars_CRTS_chains/ run :
ls ch_*.dat_chain.dat > chain_list.ls
'''
filename = dir_in + 'chain.list'
files=np.loadtxt(filename,dtype=str)
# initialise storing vecfiles_rtors
sigma_l = np.empty(0,dtype=float)
sigma_m = np.empty(0,dtype=float)
sigma_h = np.empty(0,dtype=float)
tau_l = np.empty(0,dtype=float)
tau_m = np.empty(0,dtype=float)
tau_h = np.empty(0,dtype=float)
files_read = np.empty(0,dtype=str)
# load multiple chains
for j in range(len(files)): #
fchain = dir_in+files[j]
flatchain= np.genfromtxt(fchain)
flatchain_whole = np.copy(flatchain)
ndim = flatchain.shape[1]
hpd = np.zeros((3,ndim))
chain_len = flatchain.shape[0]
"""
The chain consists of two columns if we are fitting tau and sigma, which are natural
logs of the true values - thus at the end we need to tae
pct1sig are points at which we probe the chain, scaled to the length of the chain
for the chain of length 5000, such values will be at
positions 800,2500, 4200.
"""
pct1sig = chain_len * np.array([0.16,0.50,0.84])
medlowhig =pct1sig.astype(np.int32) # expresses the pointers above as integers
vars = ["sigma", "tau"]
set_verbose=True
for i in xrange(ndim):
vsort = np.sort(flatchain[:,i]) # sorts the array along either sigma or tau dimension
hpd[:,i] = vsort[medlowhig] # picks out values at the positions for the
# points at 15%, 50%, and 84% of the maximum posterior distribution
ln_sigma_lmh = hpd[:,0]
ln_tau_lmh = hpd[:,1]
print 'HPD of sigma', np.exp(ln_sigma_lmh)
print 'HPD of tau', np.exp(ln_tau_lmh)
exp_sigma = np.exp(ln_sigma_lmh)
exp_tau = np.exp(ln_tau_lmh)
sigma_l = np.append(sigma_l,exp_sigma[0])
sigma_m = np.append(sigma_m,exp_sigma[1])
sigma_h = np.append(sigma_h,exp_sigma[2])
tau_l = np.append(tau_l, exp_tau[0])
tau_m = np.append(tau_m, exp_tau[1])
tau_h = np.append(tau_h, exp_tau[2])
star_name = files[j][3:-14]
print 'Star name', star_name
files_read=np.append(files_read,star_name)
## save all the information to output file
print 'We have retrieved chain results data for ', len(sigma_l) ,' CRTS stars out of ', len(files)
fout = dir_out + 'javelin_CRTS_stars_'+err_txt+'_chain_results.txt'
DAT= np.column_stack((files_read, sigma_l, sigma_m, sigma_h, tau_l, tau_m, tau_h))
print 'We saved the results to ', fout
# sort the DAT column accoring to QSO names
newDAT=DAT[DAT[:,0].argsort()]
np.savetxt(fout,newDAT, delimiter=" ", fmt="%s")