-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjavelin_chain_stacking_DRW.py
127 lines (93 loc) · 3.68 KB
/
javelin_chain_stacking_DRW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 26 14:48:12 2014
@author: suberlak
Plotting stacked chain posterior distributions to investigate their gaussianity
Chains are named :
ch_DRWtest_LC547_err2.dat_chain.dat
"""
import numpy as np
from math import isinf
dir_in = ['qso_drw_chains/','qso_drw_chains/no_prior/','qso_drw_medium_LC_chains/with_prior/','qso_drw_medium_LC_chains/no_prior/']
dir_out= ['qso_drw_analysis/','qso_drw_medium_analysis/']
out = dir_out[1]
dir_with_prior = dir_in[2]
dir_no_prior = dir_in[3]
with_prior = 'no'
chain_list = 'chains_err_all.ls'
if with_prior == 'yes' :
filename = dir_with_prior + chain_list
files=np.loadtxt(filename,dtype=str)
post = '_with_prior'
else :
dir_chains = dir_in[3]
filename = dir_no_prior + chain_list
files=np.loadtxt(filename,dtype=str)
post = '_no_prior'
#########################
# LOADING CHAINS #
#########################
log10_sigma = np.zeros((1,3),dtype=float)
log10_tau = np.zeros((1,3),dtype=float)
log10_sigma_err1 = np.empty(0,dtype=float)
log10_tau_err1 = np.empty(0,dtype=float)
log10_sigma_err2 = np.empty(0,dtype=float)
log10_tau_err2 = np.empty(0,dtype=float)
log10_sigma_err3 = np.empty(0,dtype=float)
log10_tau_err3 = np.empty(0,dtype=float)
#np.empty(0,dtype=float)
for j in range(len(files)): # len(files)
# LOAD THE CHAIN
fchain = dir_chains+files[j]
flatchain= np.genfromtxt(fchain)
drw_name = files[j][3:-14]
error = files[j][-15]
print '\n',drw_name, 'error', error
# RETRIEVE SIGMA AND TAU COLS
sigma = np.exp(flatchain[:,0])
tau = np.exp(flatchain[:,1])
x=np.log10(sigma)
y=np.log10(tau)
# REMOVE THE INFINITE VALUES
xinf = np.asarray(map(isinf,x),dtype=bool)
yinf = np.asarray(map(isinf,y),dtype=bool)
ttlinf = xinf + yinf
# ttlwh = np.where(ttlinf == True) list of good indices
gi = -ttlinf # good_indices
non_inf = len(np.where(gi == True)[0])
print 'Out of ', len(x),' rows, we have ', non_inf, ' of those that do not',\
' have any infinities, and only those are used '
# STACK INTO THREE SEPARATE FILES DEPENDING ON ERROR
if error == '1' :
log10_sigma_err1 = np.append(log10_sigma_err1,x[gi])
log10_tau_err1 = np.append(log10_tau_err1,y[gi])
if error == '2' :
log10_sigma_err2= np.append(log10_sigma_err2,x[gi])
log10_tau_err2= np.append(log10_tau_err2,y[gi])
if error == '3' :
log10_sigma_err3 =np.append(log10_sigma_err3,x[gi])
log10_tau_err3 = np.append(log10_tau_err3,y[gi])
print 'We have for err1 ', len(log10_sigma_err1), 'values for sigma results, and ',\
len(log10_tau_err1), 'values for tau results '
print 'We have for err2 ', len(log10_sigma_err2), 'values for sigma results, and ',\
len(log10_tau_err2), 'values for tau results '
print 'We have for err3 ', len(log10_sigma_err3), 'values for sigma results, and ',\
len(log10_tau_err3), 'values for tau results '
###########################
# SAVING STACKED CHAINS #
###########################
if len(log10_sigma_err1) > 0:
arr1 = [log10_sigma_err1, log10_tau_err1]
fname = out + 'log10_sigma_log_10_tau_err1_stacked_chains'+post+'.npy'
np.save(fname,arr1)
print 'Saving ', fname
if len(log10_sigma_err2) > 0:
arr2 = [log10_sigma_err2, log10_tau_err2]
fname = out + 'log10_sigma_log_10_tau_err2_stacked_chains'+post+'.npy'
np.save(fname,arr2)
print 'Saving ', fname
if len(log10_sigma_err3) > 0:
arr3 = [log10_sigma_err3, log10_tau_err3]
fname = out + 'log10_sigma_log_10_tau_err3_stacked_chains'+post+'.npy'
np.save(fname,arr3)
print 'Saving ', fname