Baseline1 - ResNet50 - SPIKaMed Full Images
✅ TOP1ACC on test = ==85.15%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.869
0.869
0.869
23
Koilocytotic
0.889
0.64
0.744
25
Metaplastic
0.764
0.928
0.839
28
Parabasal
0.923
1
0.96
12
Superficial
0.846
0.846
0.846
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.869
0.0
0.130
0.0
0.0
Koilocytotic
0.04
0.64
0.24
0.04
0.04
Metaplastic
0.036
0.036
0.928
0.0
0.0
Parabasal
0.0
0.0
0.0
1.0
0.0
Superficial
0.0
0.0
0.0
0.0
1.0
Baseline2 - ResNet50 - SPIKaMed Cropped Images
✅ TOP1ACC on test = ==95.11%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.975
0.951
0.963
82
Koilocytotic
0.895
0.928
0.911
83
Metaplastic
0.95
0.95
0.95
80
Parabasal
1
0.988
0.994
80
Superficial
0.988
0.988
0.988
84
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.963
0.036
0.0
0.0
0.0
Koilocytotic
0.024
0.915
0.036
0.0
0.024
Metaplastic
0.0
0.037
0.963
0.0
0.0
Parabasal
0.0
0.0
0.0
1.0
0.0
Superficial
0.012
0.0
0.0
0.0
0.988
Baseline3 - ResNet50 - Masked Region of SPIKaMeD Full Images
✅ TOP1ACC on test = ==86.13%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.815
0.957
0.88
23
Koilocytotic
0.789
0.6
0.682
25
Metaplastic
0.815
0.786
0.8
28
Parabasal
0.769
0.833
0.8
12
Superficial
0.8
0.923
0.857
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.957
0.043
0.0
0.0
0.0
Koilocytotic
0.08
0.64
0.12
0.04
0.12
Metaplastic
0.035
0.107
0.821
0.035
0.0
Parabasal
0.167
0.0
0.0
0.833
0.0
Superficial
0.0
0.0
0.0
0.0
1.0
Generalization Test - Baseline w cropped SPIKaMed model on Smear dataset
(Train:test=1:9, 50 epochs training)
✅ TOP1ACC on test = ==57.61%==
Precision
Recall
F1-Score
Support
Carcinoma
0.532
0.7
0.604
120
Light Dysplastic
0.680
0.685
0.683
146
Moderate Dysplastic
0.419
0.402
0.410
117
Normal Columnar
0.521
0.481
0.5
79
Normal Intermediate
0.742
0.875
0.803
56
Normal Superficiel
0.959
0.783
0.862
60
Severe Dysplastic
0.405
0.335
0.367
158
predict\truth
Car-
L-Dys-
M-Dys-
N-Col-
N-Inter-
N-Sup-
S-Dys
Carcinoma
0.683
0.016
0.041
0.025
0.0
0.0
0.0
Light Dysplastic
0.034
0.630
0.144
0.021
0.027
0.0
0.144
Moderate Dysplastic
0.094
0.256
0.427
0.008
0.017
0.0
0.197
Normal Columnar
0.278
0.051
0.025
0.494
0.0
0.0
0.152
Normal Intermediate
0.018
0.036
0.036
0.036
0.875
0.036
0.0
Normal Superficiel
0.0
0.0
0.0
0.0
0.217
0.783
0.0
Severe Dysplastic
0.196
0.057
0.234
0.171
0.0
0.0
0.341
Model 1 - Residual Attention Network - SPIKaMeD Full Images
✅ TOP1ACC on test = ==84.16%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.833
0.869
0.851
23
Koilocytotic
0.857
0.72
0.783
25
Metaplastic
0.862
0.893
0.877
28
Parabasal
0.846
0.917
0.88
12
Superficial
0.786
0.846
0.815
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.869
0.086
0.043
0.0
0.0
Koilocytotic
0.08
0.72
0.08
0.0
0.12
Metaplastic
0.036
0.0
0.893
0.071
0.0
Parabasal
0.083
0.0
0.0
0.917
0.0
Superficial
0.0
0.077
0.077
0.0
0.846
Model 2 - DenseNet - SPIKaMeD Full Images
✅ TOP1ACC on test = ==89.11%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.846
0.957
0.898
23
Koilocytotic
0.864
0.76
0.809
25
Metaplastic
0.929
0.929
0.929
28
Parabasal
1
0.917
0.957
12
Superficial
0.857
0.923
0.889
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.957
0.043
0.0
0.0
0.0
Koilocytotic
0.08
0.76
0.08
0.0
0.08
Metaplastic
0.035
0.035
0.929
0.0
0.0
Parabasal
0.083
0.0
0.0
0.917
0.0
Superficial
0.0
0.077
0.0
0.0
0.923
Model 3 - DenseNet - SPIKaMeD Cropped Images
✅ TOP1ACC on test = ==95.84%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.952
0.963
0.958
82
Koilocytotic
0.913
0.879
0.896
83
Metaplastic
0.949
0.938
0.943
80
Parabasal
1.0
0.988
0.994
80
Superficial
0.955
1.0
0.977
84
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.963
0.037
0.0
0.0
0.0
Koilocytotic
0.048
0.879
0.048
0.0
0.024
Metaplastic
0.0
0.05
0.938
0.0
0.012
Parabasal
0.0
0.0
0.0
0.988
0.012
Superficial
0.0
0.0
0.0
0.0
1.0
Model 4 - DenseNet - Masked Region of SPIKaMeD Full Images
✅ TOP1ACC on test = ==90.10%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.913
0.913
0.913
23
Koilocytotic
0.875
0.84
0.857
25
Metaplastic
0.893
0.893
0.893
28
Parabasal
1.0
0.75
0.857
12
Superficial
0.765
1.0
0.867
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.913
0.087
0.0
0.0
0.0
Koilocytotic
0.04
0.84
0.04
0.0
0.08
Metaplastic
0.036
0.0
0.893
0.0
0.071
Parabasal
0.0
0.083
0.167
0.75
0.0
Superficial
0.0
0.0
0.0
0.0
1.0
Model 5 - Channel Attention DenseNet - SPIKaMeD Full Images
✅ TOP1ACC on test = ==91.09%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.958
1.0
0.978
23
Koilocytotic
0.952
0.8
0.869
25
Metaplastic
0.867
0.929
0.896
28
Parabasal
1.0
1.0
1.0
12
Superficial
0.857
0.923
0.889
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
1.0
0.0
0.0
0.0
0.0
Koilocytotic
0.0
0.8
0.12
0.0
0.08
Metaplastic
0.036
0.036
0.929
0.0
0.0
Parabasal
0.0
0.0
0.0
1.0
0.0
Superficial
0.0
0.0
0.077
0.0
0.923
Model 6 - Channel Attention DenseNet - SPIKaMeD Cropped Images
✅ TOP1ACC on test = ==96.33%==
Precision
Recall
F1-Score
Support
Dyskeratotic
0.941
0.976
0.958
82
Koilocytotic
0.907
0.939
0.923
83
Metaplastic
0.962
0.95
0.956
80
Parabasal
1.0
0.9875
0.994
80
Superficial
1.0
0.952
0.976
84
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.976
0.024
0.0
0.0
0.0
Koilocytotic
0.036
0.940
0.024
0.0
0.0
Metaplastic
0.0
0.05
0.95
0.0
0.0
Parabasal
0.0125
0.0
0.0
0.9875
0.0
Superficial
0.012
0.024
0.012
0.0
0.952
Model 7 - Channel Attention DenseNet - SPIKaMeD Masked Images
✅ TOP1ACC on test = ==87.13%==
Precision
Recall
F1-Score
Support
Dyskeratotic
1.0
0.913
0.955
23
Koilocytotic
0.710
0.88
0.786
25
Metaplastic
0.8
0.857
0.828
28
Parabasal
1.0
0.833
0.909
12
Superficial
0.889
0.615
0.727
13
predict\truth
Dys-
Koi-
Met-
Par-
Sup-
Dyskeratotic
0.913
0.043
0.043
0.0
0.0
Koilocytotic
0.0
0.88
0.08
0.0
0.04
Metaplastic
0.0
0.143
0.857
0.0
0.0
Parabasal
0.0
0.083
0.083
0.833
0.0
Superficial
0.0
0.231
0.154
0.0
0.615