-
Notifications
You must be signed in to change notification settings - Fork 40
/
main.py
117 lines (78 loc) · 3.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import cv2
import random
import numpy as np
import torch
import argparse
from shutil import copyfile
from src.config import Config
from src.edge_connect import EdgeConnect
def main(mode=None):
r"""starts the model
"""
config = load_config(mode)
# cuda visble devices
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in config.GPU)
# init device
if torch.cuda.is_available():
config.DEVICE = torch.device("cuda")
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
else:
config.DEVICE = torch.device("cpu")
# set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader)
cv2.setNumThreads(0)
# initialize random seed
torch.manual_seed(config.SEED)
torch.cuda.manual_seed_all(config.SEED)
np.random.seed(config.SEED)
random.seed(config.SEED)
# build the model and initialize
model = EdgeConnect(config)
model.load()
# model test
print('\nstart testing...\n')
model.test()
def load_config(mode=None):
r"""loads model config
"""
parser = argparse.ArgumentParser()
parser.add_argument('--path', '--checkpoints', type=str, default='./checkpoints', help='model checkpoints path (default: ./checkpoints)')
parser.add_argument('--model', type=int, choices=[1, 2, 3, 4], help='1: edge model, 2: inpaint model, 3: edge-inpaint model, 4: joint model')
# test mode
parser.add_argument('--input', type=str, help='path to the input images directory or an input image')
parser.add_argument('--edge', type=str, help='path to the edges directory or an edge file')
parser.add_argument('--output', type=str, help='path to the output directory')
parser.add_argument('--remove', nargs= '*' ,type=int, help='objects to remove')
parser.add_argument('--cpu', type=str, help='machine to run segmentation model on')
args = parser.parse_args()
#if path for checkpoint not given
if args.path is None:
args.path='./checkpoints'
config_path = os.path.join(args.path, 'config.yml')
# create checkpoints path if does't exist
if not os.path.exists(args.path):
os.makedirs(args.path)
# copy config template if does't exist
if not os.path.exists(config_path):
copyfile('./config.yml.example', config_path)
# load config file
config = Config(config_path)
# test mode
config.MODE = 2
config.MODEL = args.model if args.model is not None else 3
config.OBJECTS = args.remove if args.remove is not None else [3,15]
config.SEG_DEVICE = 'cpu' if args.cpu is not None else 'cuda'
config.INPUT_SIZE = 256
if args.input is not None:
config.TEST_FLIST = args.input
if args.edge is not None:
config.TEST_EDGE_FLIST = args.edge
if args.output is not None:
config.RESULTS = args.output
else:
if not os.path.exists('./results_images'):
os.makedirs('./results_images')
config.RESULTS = './results_images'
return config
if __name__ == "__main__":
main()