-
Notifications
You must be signed in to change notification settings - Fork 32
/
Picture.py
485 lines (452 loc) · 18.4 KB
/
Picture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# -*- coding: utf-8 -*-
"""
Created on Tue May 03 16:36:36 2016
@author: Administrator
"""
import cv2
import os
import copy
import random
import sys
'''
函数:Resize()
函数功能:批量调整图片大小
输入参数:dir_path----文件库路径
new_h,new_w----新图片的高度和宽度
'''
def Resize(dir_path,new_h,new_w):
if not os.path.exists(dir_path):
print u'批量调整图片大小的图片库路径不存在'
sys.exit(0)
dirs = os.listdir(dir_path)
if os.path.isdir(dir_path+'/'+dirs[0]):
for subdir in dirs:
#print dirs
sub_dir = dir_path + '/' + subdir
if os.path.isdir(sub_dir):
for files in os.listdir(sub_dir):
print files
file_path = sub_dir + '/' + files
img = cv2.imread(file_path)
shape = img.shape
if (int(shape[0])==new_h) and (int(shape[1])==new_w):
continue
res = cv2.resize(img,(new_h,new_w),interpolation=cv2.INTER_CUBIC)
cv2.imwrite(file_path,res)
else:
sub_dir = dir_path
for files in os.listdir(sub_dir):
print files
file_path = sub_dir + '/' + files
img = cv2.imread(file_path)
shape = img.shape
if (int(shape[0])==new_h) and (int(shape[1])==new_w):
continue
res = cv2.resize(img,(new_h,new_w),interpolation=cv2.INTER_CUBIC)
cv2.imwrite(file_path,res)
'''
函数:DataAugmentFlip()
函数功能:扩大数据量,主要是通过翻转
输入参数:dir_path----图片库路径
num----一个阈值,处理文件少于num文件内的图片
targetnum----目标数量,即打算扩充后的图片数量
'''
def DataAugmentFlip(dir_path,iLR=True,iUD=False,iDia=False,targetnum=-1,num=-1):
if not os.path.exists(dir_path):
print u'路径不存在'
sys.exit(0)
#Num = 0 #计数
dirs = os.listdir(dir_path)
if os.path.isdir(dir_path + '/' + dirs[0]):
for subdir in dirs:
sub_dir = dir_path + '/' + subdir
files = os.listdir(sub_dir)
fileNum = len(files)
Num = fileNum
if fileNum > num:
continue
for fr in files:
suff = fr.split('.')[1]
filename = sub_dir + '/' + fr
img = cv2.imread(filename)
size = img.shape
res = copy.deepcopy(img)
h = size[0]
w = size[1]
if iLR == True:
for i in range(h):
for j in range(w):
res[i,w-1-j]=img[i,j]
new_name ="%s/%s.%s"%(sub_dir,fr+'_iLR',suff)
cv2.imwrite(new_name,iLR)
Num += 1
if Num == targetnum:
return 0
#cv2.imshow('image',iLR)
#cv2.waitKey(0)
if iUD == True:
for i in range(h):
for j in range(w):
res[h-1-i,j]=img[i,j]
new_name ="%s/%s.%s"%(sub_dir,fr+'_iUD',suff)
cv2.imwrite(new_name,res)
Num += 1
if Num == targetnum:
return 0
if iDia == True:
for i in range(h):
for j in range(w):
res[h-1-i,w-1-j]=img[i,j]
new_name ="%s/%s.%s"%(sub_dir,fr+'_iDia',suff)
cv2.imwrite(new_name,iDia)
Num += 1
if Num == targetnum:
return 0
else:#只针对一个文件夹
sub_dir = dir_path
files = os.listdir(sub_dir)
fileNum = len(files)
Num = fileNum
'''
#可选
if fileNum > num:
return 0
'''
for fr in files:
suff = fr.split('.')
filename = sub_dir + '/' + fr
img = cv2.imread(filename)
size = img.shape
res = copy.deepcopy(img)
h = size[0]
w = size[1]
if iLR == True:
for i in range(h):
for j in range(w):
res[i,w-1-j]=img[i,j]
new_name ="%s/%s.%s"%(sub_dir,suff[0]+'_iLR',suff[1])
cv2.imwrite(new_name,res)
Num += 1
if Num == targetnum:
return 0
#cv2.imshow('image',iLR)
#cv2.waitKey(0)
if iUD == True:
for i in range(h):
for j in range(w):
res[h-1-i,j]=img[i,j]
new_name ="%s/%s.%s"%(sub_dir,suff[0]+'_iUD',suff[1])
cv2.imwrite(new_name,res)
Num += 1
if Num == targetnum:
return 0
if iDia == True:
for i in range(h):
for j in range(w):
res[h-1-i,w-1-j]=img[i,j]
new_name ="%s/%s.%s"%(sub_dir,suff[0]+'_iDia',suff[1])
cv2.imwrite(new_name,res)
Num += 1
if Num == targetnum:
return 0
'''
函数:DataAugmentCrop()
函数功能:通过随机剪裁扩充数据
输入参数:picdir----图片库文件夹路径
leftup----是否从左上角剪裁,默认
leftdown----是否从左下角剪裁
rightup----是否从右上角剪裁
rightdown----是否从右下角剪裁
new_w----剪裁后图片宽度
new_h----剪裁后图片长度
picnum----处理小于picnum的文件夹
addnum----扩充数量addnum*model
targetnum----目标数量,即打算扩充后的图片数量
'''
def DataAugmentCrop(picdir,new_w,new_h,leftup=True,leftdown=False,\
rightup=False,rightdown=False,addnum=1,targetnum=-1,picnum=-1):
if not os.path.exists(picdir):
print u'图片库文件夹路径不存在!'
sys.exit(0)
#Num = 0 #计算
dirs = os.listdir(picdir)
if os.path.isdir(picdir+'/'+dirs[0]):
for sub in dirs:
subdir = picdir+'/'+sub
files = os.listdir(subdir)
Num = len(files)
if len(files) >= picnum:
continue
for fr in files:
filename = subdir+'/'+fr
#第一步,先将图片缩放到new_h*new_w,保存下来
img = cv2.imread(filename)
size = img.shape
if size[0] != new_h or size[1] != new_w:
img0 = cv2.resize(img,(new_h,new_w),interpolation=cv2.INTER_CUBIC)
cv2.imwrite(filename,img0)
#第二步,重新读取该图片,把该图片缩放到new_h+16,new_w+16
img = cv2.imread(filename)
size = img.shape
'''
if size[0]<=(new_h+5) or size[1]<=(new_w+5):
img1 = cv2.resize(img,(new_w+16,new_h+16),\
interpolation=cv2.INTER_CUBIC)
size=img1.shape
else:
img1 = img
'''
img1 = cv2.resize(img,(new_w+16,new_h+16),interpolation=cv2.INTER_CUBIC)
size = img1.shape
if leftup == True:
for i in range(addnum):
xpoint = random.randint(0,size[1]-new_w)
ypoint = random.randint(0,size[0]-new_h)
res = img1[ypoint:ypoint+new_h,xpoint:xpoint+new_w,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_leftup_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
if leftdown == True:
for i in range(addnum):
xpoint = random.randint(0,size[1]-new_w)
ypoint = random.randint(new_h,size[0])
res = img1[ypoint-new_h:ypoint,xpoint:xpoint+new_w,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_leftdown_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
if rightup == True:
for i in range(addnum):
xpoint = random.randint(new_w,size[1])
ypoint = random.randint(0,size[0]-new_h)
res = img1[ypoint:ypoint+new_h,xpoint-new_w:xpoint,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_rightup_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
if rightdown == True:
for i in range(addnum):
xpoint = random.randint(new_w,size[1])
ypoint = random.randint(new_h,size[0])
res = img1[ypoint-new_h:ypoint,xpoint-new_w:xpoint,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_rightdown_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
else:#只针对一个文件夹
subdir = picdir
files = os.listdir(subdir)
Num = len(files)
'''
#可选
if len(files) > picnum:
return 0
'''
for fr in files:
filename = subdir+'/'+fr
#第一步,先将图片缩放到new_h*new_w,保存下来
img = cv2.imread(filename)
size = img.shape
if size[0] != new_h or size[1] != new_w:
img0 = cv2.resize(img,(new_h,new_w),interpolation=cv2.INTER_CUBIC)
cv2.imwrite(filename,img0)
#第二步,重新读取该图片,把该图片缩放到new_h+16,new_w+16
img = cv2.imread(filename)
size = img.shape
'''
if size[0]<=(new_h+5) or size[1]<=(new_w+5):
img1 = cv2.resize(img,(new_w+16,new_h+16),\
interpolation=cv2.INTER_CUBIC)
size=img1.shape
else:
img1 = img
'''
img1 = cv2.resize(img,(new_w+16,new_h+16),interpolation=cv2.INTER_CUBIC)
size = img1.shape
if leftup == True:
for i in range(addnum):
xpoint = random.randint(0,size[1]-new_w)
ypoint = random.randint(0,size[0]-new_h)
res = img1[ypoint:ypoint+new_h,xpoint:xpoint+new_w,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_leftup_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
if leftdown == True:
for i in range(addnum):
xpoint = random.randint(0,size[1]-new_w)
ypoint = random.randint(new_h,size[0])
res = img1[ypoint-new_h:ypoint,xpoint:xpoint+new_w,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_leftdown_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
if rightup == True:
for i in range(addnum):
xpoint = random.randint(new_w,size[1])
ypoint = random.randint(0,size[0]-new_h)
res = img1[ypoint:ypoint+new_h,xpoint-new_w:xpoint,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_rightup_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
if rightdown == True:
for i in range(addnum):
xpoint = random.randint(new_w,size[1])
ypoint = random.randint(new_h,size[0])
res = img1[ypoint-new_h:ypoint,xpoint-new_w:xpoint,:]
suff = fr.split('.')
outname="%s%d.%s"%(subdir+'/'+suff[0]+'_rightdown_',i,suff[1])
cv2.imwrite(outname,res)
Num += 1
if Num == targetnum:
return 0
'''
函数:ReduceData()
函数:如果文件中的图片数量多于num,则随机选择num
输入参数:dirpath----图片库路径
num----数量阈值
'''
def ReduceData(dirpath,num):
if not os.path.exists(dirpath):
print u'ReduceData 输入数据库路径不存在'
sys.exit(0)
dirs = os.listdir(dirpath)
if os.path.isdir(dirpath+'/'+dirs[0]):
for sub in dirs:
subdir = dirpath+'/'+sub
files = os.listdir(subdir)
filenum = len(files)
if filenum>num:
subfiles = random.sample(files,filenum-num)
for fr in subfiles:
filename = subdir+'/'+fr
os.remove(filename)
else:#针对一个文件夹
subdir = dirpath
files = os.listdir(subdir)
filenum = len(files)
if filenum>num:
subfiles = random.sample(files,filenum-num)
for fr in subfiles:
filename = subdir+'/'+fr
os.remove(filename)
'''
函数:DataBalance()
函数功能:平衡数据集,但只是粗略的并不能十分精确
输入参数:dirpath----数据集路径
baisnum----基准数,就是想要的平均数,这里要说明一下,我做的只是少量数据的扩充
因此大于baisnum的文件夹并没有处理,最好的2的倍数
new_h----处理后图片高度
new_w----处理后图片宽度
'''
def DataBalance(dirpath,basinum,new_w,new_h):
if not os.path.exists(dirpath):
print u'数据集路径不存在'
sys.exit(0)
dirs = os.listdir(dirpath)
for sub in dirs:
subdir = dirpath+'/'+sub
files = os.listdir(subdir)
Lfile = len(files)
if Lfile == basinum:
continue
elif Lfile > basinum:
#continue
ReduceData(subdir,basinum)
Resize(subdir,new_h,new_w)
#如果basinum/Lfile=<2,则图片数量在basinum/2~basinum之间
#因此只水平翻转就能达到目的
elif basinum/Lfile <= 2:
DataAugmentFlip(subdir,targetnum=basinum)
#如果basinum/Lfile =<8,则翻转一次,在从四角随机剪裁
elif 2< basinum/Lfile <= 8:
DataAugmentFlip(subdir)
Resize(subdir,new_h,new_w)
DataAugmentCrop(subdir,new_w,new_h,True,True,True,True,targetnum=basinum)
#如果basinum/Lfile > 8
elif basinum/Lfile > 8:
addnum = (basinum/Lfile)/2/4 + 1
DataAugmentFlip(subdir)
Resize(subdir,new_h,new_w)
DataAugmentCrop(subdir,new_w,new_h,True,True,True,True,addnum,targetnum=basinum)
print u'处理完毕'
'''
函数:GaussDataBalance()
函数功能:使数据呈现高斯分布
输入的参数:dirpath----数据集路径
model-----选择数据呈现的分布类型,默认是高斯分布gauss
其他类型暂时未加
new_h----处理后图片高度
new_w----处理后图片宽度
mu----高斯分布的均值,这里不能是0,
std----高斯分布方差,建议5,如果为1,其实相差不大
'''
def GaussDataBalance(dirpath,new_w,new_h,mu,std=5,model='gauss'):
if not os.path.exists(dirpath):
print u'数据库路径不存在!'
sys.exit(0)
dirs = os.listdir(dirpath)
numlist = []
#产生一个高斯分布序列
if model == 'gauss':
for i in range(len(dirs)):
N = random.gauss(mu,std)
n = round(N,0)
#print n
numlist.append(int(n))
Num = 0 #处理第Num个文件夹
for sub in dirs:
basinum = numlist[Num]
if basinum <= 0:
basinum = 1
subdir = dirpath+'/'+sub
files = os.listdir(subdir)
Lfile = len(files)
if Lfile == basinum:
continue
elif Lfile > basinum:
#continue
ReduceData(subdir,basinum)
Resize(subdir,new_h,new_w)
#如果basinum/Lfile=<2,则图片数量在basinum/2~basinum之间
#因此只水平翻转就能达到目的
elif basinum/Lfile <= 2:
DataAugmentFlip(subdir,targetnum=basinum)
#如果basinum/Lfile =<8,则翻转一次,在从四角随机剪裁
elif 2< basinum/Lfile <= 8:
DataAugmentFlip(subdir)
Resize(subdir,new_h,new_w)
DataAugmentCrop(subdir,new_w,new_h,True,True,True,True,targetnum=basinum)
#如果basinum/Lfile > 8
elif basinum/Lfile > 8:
addnum = (basinum/Lfile)/2/4 + 1
DataAugmentFlip(subdir)
Resize(subdir,new_h,new_w)
DataAugmentCrop(subdir,new_w,new_h,True,True,True,True,addnum,targetnum=basinum)
print u'处理完毕'
if __name__=='__main__':
dir_path = 'E:/Face_data/FaceImages'
new_h = 144
new_w = 144
#Resize(dir_path,new_h,new_w)
#DataAugment(dir_path,61)
#DataAugmentCrop(dir_path,20,144,144,True,True,True,True,60)
#DataBalance(dir_path,40)
#ReduceData(dir_path,4)
GaussDataBalance(dir_path,144,144,50)