forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
re_official_evaluation.py
281 lines (254 loc) · 9.62 KB
/
re_official_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# imitations under the License.
"""
This module to calculate precision, recall and f1-value
of the predicated results.
"""
import sys
import json
import os
import zipfile
import traceback
import argparse
SUCCESS = 0
FILE_ERROR = 1
NOT_ZIP_FILE = 2
ENCODING_ERROR = 3
JSON_ERROR = 4
SCHEMA_ERROR = 5
ALIAS_FORMAT_ERROR = 6
CODE_INFO = {
SUCCESS: 'success',
FILE_ERROR: 'file is not exists',
NOT_ZIP_FILE: 'predict file is not a zipfile',
ENCODING_ERROR: 'file encoding error',
JSON_ERROR: 'json parse is error',
SCHEMA_ERROR: 'schema is error',
ALIAS_FORMAT_ERROR: 'alias dict format is error'
}
def del_bookname(entity_name):
"""delete the book name"""
if entity_name.startswith(u'《') and entity_name.endswith(u'》'):
entity_name = entity_name[1:-1]
return entity_name
def check_format(line):
"""检查输入行是否格式错误"""
ret_code = SUCCESS
json_info = {}
try:
line = line.strip()
except:
ret_code = ENCODING_ERROR
return ret_code, json_info
try:
json_info = json.loads(line)
except:
ret_code = JSON_ERROR
return ret_code, json_info
if 'text' not in json_info or 'spo_list' not in json_info:
ret_code = SCHEMA_ERROR
return ret_code, json_info
required_key_list = ['subject', 'predicate', 'object']
for spo_item in json_info['spo_list']:
if type(spo_item) is not dict:
ret_code = SCHEMA_ERROR
return ret_code, json_info
if not all(
[required_key in spo_item for required_key in required_key_list]):
ret_code = SCHEMA_ERROR
return ret_code, json_info
if not isinstance(spo_item['subject'], str) or \
not isinstance(spo_item['object'], dict):
ret_code = SCHEMA_ERROR
return ret_code, json_info
return ret_code, json_info
def _parse_structured_ovalue(json_info):
spo_result = []
for item in json_info["spo_list"]:
s = del_bookname(item['subject'].lower())
o = {}
for o_key, o_value in item['object'].items():
o_value = del_bookname(o_value).lower()
o[o_key] = o_value
spo_result.append({"predicate": item['predicate'], \
"subject": s, \
"object": o})
return spo_result
def load_predict_result(predict_filename):
"""Loads the file to be predicted"""
predict_result = {}
ret_code = SUCCESS
if not os.path.exists(predict_filename):
ret_code = FILE_ERROR
return ret_code, predict_result
try:
predict_file_zip = zipfile.ZipFile(predict_filename)
except:
ret_code = NOT_ZIP_FILE
return ret_code, predict_result
for predict_file in predict_file_zip.namelist():
for line in predict_file_zip.open(predict_file):
ret_code, json_info = check_format(line)
if ret_code != SUCCESS:
return ret_code, predict_result
sent = json_info['text']
spo_result = _parse_structured_ovalue(json_info)
predict_result[sent] = spo_result
return ret_code, predict_result
def load_test_dataset(golden_filename):
"""load golden file"""
golden_dict = {}
ret_code = SUCCESS
if not os.path.exists(golden_filename):
ret_code = FILE_ERROR
return ret_code, golden_dict
with open(golden_filename, 'r', encoding="utf-8") as gf:
for line in gf:
ret_code, json_info = check_format(line)
if ret_code != SUCCESS:
return ret_code, golden_dict
sent = json_info['text']
spo_result = _parse_structured_ovalue(json_info)
golden_dict[sent] = spo_result
return ret_code, golden_dict
def load_alias_dict(alias_filename):
"""load alias dict"""
alias_dict = {}
ret_code = SUCCESS
if alias_filename == "":
return ret_code, alias_dict
if not os.path.exists(alias_filename):
ret_code = FILE_ERROR
return ret_code, alias_dict
with open(alias_filename, "r", encoding="utf-8") as af:
for line in af:
line = line.strip()
try:
words = line.split('\t')
alias_dict[words[0].lower()] = set()
for alias_word in words[1:]:
alias_dict[words[0].lower()].add(alias_word.lower())
except:
ret_code = ALIAS_FORMAT_ERROR
return ret_code, alias_dict
return ret_code, alias_dict
def del_duplicate(spo_list, alias_dict):
"""delete synonyms triples in predict result"""
normalized_spo_list = []
for spo in spo_list:
if not is_spo_in_list(spo, normalized_spo_list, alias_dict):
normalized_spo_list.append(spo)
return normalized_spo_list
def is_spo_in_list(target_spo, golden_spo_list, alias_dict):
"""target spo是否在golden_spo_list中"""
if target_spo in golden_spo_list:
return True
target_s = target_spo["subject"]
target_p = target_spo["predicate"]
target_o = target_spo["object"]
target_s_alias_set = alias_dict.get(target_s, set())
target_s_alias_set.add(target_s)
for spo in golden_spo_list:
s = spo["subject"]
p = spo["predicate"]
o = spo["object"]
if p != target_p:
continue
if s in target_s_alias_set and _is_equal_o(o, target_o, alias_dict):
return True
return False
def _is_equal_o(o_a, o_b, alias_dict):
for key_a, value_a in o_a.items():
if key_a not in o_b:
return False
value_a_alias_set = alias_dict.get(value_a, set())
value_a_alias_set.add(value_a)
if o_b[key_a] not in value_a_alias_set:
return False
for key_b, value_b in o_b.items():
if key_b not in o_a:
return False
value_b_alias_set = alias_dict.get(value_b, set())
value_b_alias_set.add(value_b)
if o_a[key_b] not in value_b_alias_set:
return False
return True
def calc_pr(predict_filename, alias_filename, golden_filename):
"""calculate precision, recall, f1"""
ret_info = {}
#load alias dict
ret_code, alias_dict = load_alias_dict(alias_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
return ret_info
#load test golden dataset
ret_code, golden_dict = load_test_dataset(golden_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
return ret_info
#load predict result
ret_code, predict_result = load_predict_result(predict_filename)
if ret_code != SUCCESS:
ret_info['errorCode'] = ret_code
ret_info['errorMsg'] = CODE_INFO[ret_code]
return ret_info
#evaluation
correct_sum, predict_sum, recall_sum, recall_correct_sum = 0.0, 0.0, 0.0, 0.0
for sent in golden_dict:
golden_spo_list = del_duplicate(golden_dict[sent], alias_dict)
predict_spo_list = predict_result.get(sent, list())
normalized_predict_spo = del_duplicate(predict_spo_list, alias_dict)
recall_sum += len(golden_spo_list)
predict_sum += len(normalized_predict_spo)
for spo in normalized_predict_spo:
if is_spo_in_list(spo, golden_spo_list, alias_dict):
correct_sum += 1
for golden_spo in golden_spo_list:
if is_spo_in_list(golden_spo, predict_spo_list, alias_dict):
recall_correct_sum += 1
sys.stderr.write('correct spo num = {}\n'.format(correct_sum))
sys.stderr.write('submitted spo num = {}\n'.format(predict_sum))
sys.stderr.write('golden set spo num = {}\n'.format(recall_sum))
sys.stderr.write('submitted recall spo num = {}\n'.format(
recall_correct_sum))
precision = correct_sum / predict_sum if predict_sum > 0 else 0.0
recall = recall_correct_sum / recall_sum if recall_sum > 0 else 0.0
f1 = 2 * precision * recall / (precision + recall) \
if precision + recall > 0 else 0.0
precision = round(precision, 4)
recall = round(recall, 4)
f1 = round(f1, 4)
ret_info['errorCode'] = SUCCESS
ret_info['errorMsg'] = CODE_INFO[SUCCESS]
ret_info['data'] = []
ret_info['data'].append({'name': 'precision', 'value': precision})
ret_info['data'].append({'name': 'recall', 'value': recall})
ret_info['data'].append({'name': 'f1-score', 'value': f1})
return ret_info
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
"--golden_file", type=str, help="true spo results", required=True)
parser.add_argument(
"--predict_file", type=str, help="spo results predicted", required=True)
parser.add_argument(
"--alias_file", type=str, default='', help="entities alias dictionary")
args = parser.parse_args()
golden_filename = args.golden_file
predict_filename = args.predict_file
alias_filename = args.alias_file
ret_info = calc_pr(predict_filename, alias_filename, golden_filename)
print(json.dumps(ret_info))