forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
91 lines (76 loc) · 2.86 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import collections
import os
import io
import sys
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.initializer as I
class RnnLm(nn.Layer):
def __init__(self,
vocab_size,
hidden_size,
batch_size,
num_layers=1,
init_scale=0.1,
dropout=0.0):
super(RnnLm, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.init_scale = init_scale
self.batch_size = batch_size
self.reset_states()
self.embedder = nn.Embedding(
vocab_size,
hidden_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.lstm = nn.LSTM(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=dropout,
weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.fc = nn.Linear(
hidden_size,
vocab_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
bias_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.dropout = nn.Dropout(p=dropout)
def forward(self, inputs):
x = inputs
x_emb = self.embedder(x)
x_emb = self.dropout(x_emb)
y, (self.hidden, self.cell) = self.lstm(x_emb, (self.hidden, self.cell))
(self.hidden, self.cell) = tuple(
[item.detach() for item in (self.hidden, self.cell)])
y = self.dropout(y)
y = self.fc(y)
return y
def reset_states(self):
self.hidden = paddle.zeros(
shape=[self.num_layers, self.batch_size, self.hidden_size],
dtype='float32')
self.cell = paddle.zeros(
shape=[self.num_layers, self.batch_size, self.hidden_size],
dtype='float32')
class CrossEntropyLossForLm(nn.Layer):
def __init__(self):
super(CrossEntropyLossForLm, self).__init__()
def forward(self, y, label):
label = paddle.unsqueeze(label, axis=2)
loss = paddle.nn.functional.softmax_with_cross_entropy(
logits=y, label=label, soft_label=False)
loss = paddle.squeeze(loss, axis=[2])
loss = paddle.mean(loss, axis=[0])
loss = paddle.sum(loss)
return loss
class UpdateModel(paddle.callbacks.Callback):
# This callback reset model hidden states and update learning rate before each epoch begins
def on_epoch_begin(self, epoch=None, logs=None):
self.model.network.reset_states()