forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
119 lines (108 loc) · 4.29 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
import paddlenlp as ppnlp
from paddlenlp.data import Vocab
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--vocab_path", type=str, default="./senta_word_dict.txt", help="The path to vocabulary.")
parser.add_argument('--network', choices=['bow', 'lstm', 'bilstm', 'gru', 'bigru', 'rnn', 'birnn', 'bilstm_attn', 'cnn'],
default="bilstm", help="Select which network to train, defaults to bilstm.")
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.")
parser.add_argument("--output_path", type=str, default='./static_graph_params', help="The path of model parameter in static graph to be saved.")
args = parser.parse_args()
# yapf: enable
def main():
# Load vocab.
vocab = Vocab.load_vocabulary(args.vocab_path)
label_map = {0: 'negative', 1: 'positive'}
# Constructs the newtork.
network = args.network.lower()
vocab_size = len(vocab)
num_classes = len(label_map)
pad_token_id = vocab.to_indices('[PAD]')
if network == 'bow':
model = BoWModel(vocab_size, num_classes, padding_idx=pad_token_id)
elif network == 'bigru':
model = GRUModel(
vocab_size,
num_classes,
direction='bidirect',
padding_idx=pad_token_id)
elif network == 'bilstm':
model = LSTMModel(
vocab_size,
num_classes,
direction='bidirect',
padding_idx=pad_token_id)
elif network == 'bilstm_attn':
lstm_hidden_size = 196
attention = SelfInteractiveAttention(hidden_size=2 * stm_hidden_size)
model = BiLSTMAttentionModel(
attention_layer=attention,
vocab_size=vocab_size,
lstm_hidden_size=lstm_hidden_size,
num_classes=num_classes,
padding_idx=pad_token_id)
elif network == 'birnn':
model = RNNModel(
vocab_size,
num_classes,
direction='bidirect',
padding_idx=pad_token_id)
elif network == 'cnn':
model = CNNModel(vocab_size, num_classes, padding_idx=pad_token_id)
elif network == 'gru':
model = GRUModel(
vocab_size,
num_classes,
direction='forward',
padding_idx=pad_token_id,
pooling_type='max')
elif network == 'lstm':
model = LSTMModel(
vocab_size,
num_classes,
direction='forward',
padding_idx=pad_token_id,
pooling_type='max')
elif network == 'rnn':
model = RNNModel(
vocab_size,
num_classes,
direction='forward',
padding_idx=pad_token_id,
pooling_type='max')
else:
raise ValueError(
"Unknown network: %s, it must be one of bow, lstm, bilstm, cnn, gru, bigru, rnn, birnn and bilstm_attn."
% network)
# Load model parameters.
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
model.eval()
inputs = [paddle.static.InputSpec(shape=[None, None], dtype="int64")]
# Convert to static graph with specific input description
if args.network in [
"lstm", "bilstm", "gru", "bigru", "rnn", "birnn", "bilstm_attn"
]:
inputs.append(paddle.static.InputSpec(
shape=[None], dtype="int64")) # seq_len
model = paddle.jit.to_static(model, input_spec=inputs)
# Save in static graph model.
paddle.jit.save(model, args.output_path)
if __name__ == "__main__":
main()