forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
73 lines (61 loc) · 3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
def convert_example(example, tokenizer, is_test=False):
"""
Builds model inputs from a sequence for sequence classification tasks.
It use `jieba.cut` to tokenize text.
Args:
example(obj:`list[str]`): List of input data, containing text and label if it have label.
tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.
is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
Returns:
query_ids(obj:`list[int]`): The list of query ids.
title_ids(obj:`list[int]`): The list of title ids.
query_seq_len(obj:`int`): The input sequence query length.
title_seq_len(obj:`int`): The input sequence title length.
label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
"""
query, title = example["query"], example["title"]
query_ids = np.array(tokenizer.encode(query), dtype="int64")
query_seq_len = np.array(len(query_ids), dtype="int64")
title_ids = np.array(tokenizer.encode(title), dtype="int64")
title_seq_len = np.array(len(title_ids), dtype="int64")
if not is_test:
label = np.array(example["label"], dtype="int64")
return query_ids, title_ids, query_seq_len, title_seq_len, label
else:
return query_ids, title_ids, query_seq_len, title_seq_len
def preprocess_prediction_data(data, tokenizer):
"""
It process the prediction data as the format used as training.
Args:
data (obj:`List[List[str, str]]`):
The prediction data whose each element is a text pair.
Each text will be tokenized by jieba.lcut() function.
tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.
Returns:
examples (obj:`list`): The processed data whose each element
is a `list` object, which contains
- query_ids(obj:`list[int]`): The list of query ids.
- title_ids(obj:`list[int]`): The list of title ids.
- query_seq_len(obj:`int`): The input sequence query length.
- title_seq_len(obj:`int`): The input sequence title length.
"""
examples = []
for query, title in data:
query_ids = tokenizer.encode(query)
title_ids = tokenizer.encode(title)
examples.append([query_ids, title_ids, len(query_ids), len(title_ids)])
return examples