-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImage_Classifier.py
141 lines (97 loc) · 4.2 KB
/
Image_Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import h5py
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from tqdm import tqdm
import torch
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
class Img_Dataset(Dataset):
def __init__(self, img_x, img_y):
self.img_x = torch.Tensor(img_x)
self.img_y = torch.Tensor(img_y)
def __getitem__(self, index):
return (self.img_x[index], self.img_y[index])
def __len__(self):
return len(self.img_x)
class Image_Classifier(torch.nn.Module):
def __init__(self):
super(Image_Classifier, self).__init__()
self.Z1 = torch.nn.Conv2d(3, 12, 3, stride=1, padding=1)
self.A1 = torch.nn.ReLU(self.Z1)
self.P1 = torch.nn.MaxPool2d(2, stride=2)
self.Z2 = torch.nn.Conv2d(12, 18, 4, stride=1, padding=1)
self.A2 = torch.nn.ReLU(self.Z2)
self.P2 = torch.nn.MaxPool2d(2, stride=2)
self.linear1 = torch.nn.Linear(4050, 720, bias=True)
self.A3 = torch.nn.ReLU(self.linear1)
self.linear2 = torch.nn.Linear(720, 100, bias=True)
self.A4 = torch.nn.ReLU(self.linear2)
self.linear3 = torch.nn.Linear(100, 6, bias=True)
def forward(self, data):
layer1_1 = self.Z1(data)
layer1_2 = self.A1(layer1_1)
layer1_3 = self.P1(layer1_2)
layer2_1 = self.Z2(layer1_3)
layer2_2 = self.A2(layer2_1)
layer2_3 = self.P2(layer2_2)
flatten = layer2_3.view(layer2_3.size()[0], 4050 )
lin_out_1 = self.linear1(flatten)
layer3_1 = self.A3(lin_out_1)
layer3_2 = self.A4(self.linear2(layer3_1))
out = self.linear3(layer3_2)
return F.log_softmax(out)
def main():
torch.manual_seed(100)
train_data = h5py.File('Data/train_signs.h5', 'r')
train_x, train_y = train_data['train_set_x'], train_data['train_set_y']
train_dataset = Img_Dataset(train_x, train_y)
train_dl = DataLoader(train_dataset, batch_size=16, drop_last = True, shuffle=True)
test_data = h5py.File('Data/test_signs.h5', 'r')
test_x, test_y = test_data['test_set_x'], test_data['test_set_y']
test_dataset = Img_Dataset(test_x, test_y)
test_dl = DataLoader(test_dataset, batch_size=16, drop_last=True, shuffle=False)
model = Image_Classifier()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.NLLLoss()
print('****** Training Model ****************')
for i in range(10):
loss_avg = []
acc_avg = []
model.train()
for batch in tqdm(train_dl):
#print(batch[0])
batch_dat = batch[0].permute(0, 3, 1, 2)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
predict = model.forward(batch_dat)
#print('****PREDICTION***********')
#print(predict)
pred = np.argmax(predict.detach().numpy(), axis=1)
count = sum(sum([pred == batch[1].long().detach().numpy()]))
acc = count/len(pred)
acc_avg.append(acc)
loss = criterion(predict, batch[1].long())
#print(loss)
loss_avg.append(loss.detach().cpu())
loss.backward()
optimizer.step()
print('Avg Train Loss for Epoch : '+str(i)+" is "+str(np.mean(loss_avg)))
print('Avg Train accuracy for Epoch : '+str(i)+" is "+str(np.mean(acc_avg)))
### Validation after each epoch
model.eval()
val_acc = []
for val_batch in test_dl:
val_dat = val_batch[0].permute(0, 3, 1, 2)
with torch.no_grad():
predict = model.forward(val_dat)
pred = np.argmax(predict.detach().numpy(), axis=1)
count = sum(sum([pred == val_batch[1].long().detach().numpy()]))
acc = count/len(pred)
val_acc.append(acc)
print('Avg Validation accuracy for Epoch : '+str(i)+" is "+str(np.mean(val_acc)))
torch.save(model, "image_model.pt")
if __name__ == '__main__':
main()