-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
197 lines (151 loc) · 7.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from keras.models import Model
from keras.layers.recurrent import LSTM
from keras.layers import Dense, Input, Embedding
from keras.preprocessing.sequence import pad_sequences
from keras.optimizers import Adam, RMSprop
from keras.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
from collections import Counter
import nltk
import numpy as np
import pandas as pd
import re
import json
def store_js(filename, data):
with open(filename, 'w') as f:
f.write('export default ' + json.dumps(data, indent=2))
np.random.seed(42)
BATCH_SIZE = 64
NUM_EPOCHS = 50
HIDDEN_UNITS = 256
MAX_INPUT_SEQ_LENGTH = 18
MAX_TARGET_SEQ_LENGTH = 18
MAX_VOCAB_SIZE = 800
DATA_PATH = 'data/bot_data.tsv'
WEIGHT_FILE_PATH = 'model/word-weights.h5'
input_counter = Counter()
target_counter = Counter()
input_texts = []
target_texts = []
# loading data
with open(DATA_PATH, 'r', encoding='utf8') as f:
lines = f.read().split('\n')
# pre-processing
prev_words = []
for line in lines:
next_words = [w.lower() for w in nltk.word_tokenize(line)]
if len(next_words) > MAX_TARGET_SEQ_LENGTH:
next_words = next_words[0:MAX_TARGET_SEQ_LENGTH]
if len(prev_words) > 0:
input_texts.append(prev_words)
for w in prev_words:
input_counter[w] += 1
target_words = next_words[:]
target_words.insert(0, '<SOS>')
target_words.append('<EOS>')
for w in target_words:
target_counter[w] += 1
target_texts.append(target_words)
prev_words = next_words
input_word2idx = dict()
target_word2idx = dict()
for idx, word in enumerate(input_counter.most_common(MAX_VOCAB_SIZE)):
input_word2idx[word[0]] = idx + 2
for idx, word in enumerate(target_counter.most_common(MAX_VOCAB_SIZE)):
target_word2idx[word[0]] = idx + 1
input_word2idx['<PAD>'] = 0
input_word2idx['<UNK>'] = 1
target_word2idx['<UNK>'] = 0
input_idx2word = dict([(idx, word) for word, idx in input_word2idx.items()])
target_idx2word = dict([(idx, word) for word, idx in target_word2idx.items()])
num_encoder_tokens = len(input_idx2word)
num_decoder_tokens = len(target_idx2word)
np.save('model/word-input-word2idx.npy', input_word2idx)
np.save('model/word-input-idx2word.npy', input_idx2word)
np.save('model/word-target-word2idx.npy', target_word2idx)
np.save('model/word-target-idx2word.npy', target_idx2word)
# Store necessary mappings for tfjs
store_js('js/mappings/input-word2idx.js', input_word2idx)
store_js('js/mappings/input-idx2word.js', input_idx2word)
store_js('js/mappings/target-word2idx.js', target_word2idx)
store_js('js/mappings/target-idx2word.js', target_idx2word)
encoder_input_data = []
encoder_max_seq_length = 0
decoder_max_seq_length = 0
for input_words, target_words in zip(input_texts, target_texts):
encoder_input_wids = []
for w in input_words:
w2idx = 1 # default [UNK]
if w in input_word2idx:
w2idx = input_word2idx[w]
encoder_input_wids.append(w2idx)
encoder_input_data.append(encoder_input_wids)
encoder_max_seq_length = max(len(encoder_input_wids), encoder_max_seq_length)
decoder_max_seq_length = max(len(target_words), decoder_max_seq_length)
context = dict()
context['num_encoder_tokens'] = num_encoder_tokens
context['num_decoder_tokens'] = num_decoder_tokens
context['encoder_max_seq_length'] = encoder_max_seq_length
context['decoder_max_seq_length'] = decoder_max_seq_length
print(context)
np.save('model/word-context.npy', context)
store_js('js/mappings/word-context.js', context)
def generate_batch(input_data, output_text_data):
num_batches = len(input_data) // BATCH_SIZE
while True:
for batchIdx in range(0, num_batches):
start = batchIdx * BATCH_SIZE
end = (batchIdx + 1) * BATCH_SIZE
encoder_input_data_batch = pad_sequences(input_data[start:end], encoder_max_seq_length)
decoder_target_data_batch = np.zeros(shape=(BATCH_SIZE, decoder_max_seq_length, num_decoder_tokens))
decoder_input_data_batch = np.zeros(shape=(BATCH_SIZE, decoder_max_seq_length, num_decoder_tokens))
for lineIdx, target_words in enumerate(output_text_data[start:end]):
for idx, w in enumerate(target_words):
w2idx = 0 # default [UNK]
if w in target_word2idx:
w2idx = target_word2idx[w]
decoder_input_data_batch[lineIdx, idx, w2idx] = 1
if idx > 0:
decoder_target_data_batch[lineIdx, idx - 1, w2idx] = 1
yield [encoder_input_data_batch, decoder_input_data_batch], decoder_target_data_batch
encoder_inputs = Input(shape=(None,), name='encoder_inputs')
encoder_embedding = Embedding(input_dim=num_encoder_tokens, output_dim=HIDDEN_UNITS,
input_length=encoder_max_seq_length, name='encoder_embedding')
encoder_lstm = LSTM(units=HIDDEN_UNITS, return_state=True, name='encoder_lstm')
encoder_outputs, encoder_state_h, encoder_state_c = encoder_lstm(encoder_embedding(encoder_inputs))
encoder_states = [encoder_state_h, encoder_state_c]
decoder_inputs = Input(shape=(None, num_decoder_tokens), name='decoder_inputs')
decoder_lstm = LSTM(units=HIDDEN_UNITS, return_state=True, return_sequences=True, name='decoder_lstm')
decoder_outputs, decoder_state_h, decoder_state_c = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(units=num_decoder_tokens, activation='softmax', name='decoder_dense')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
optimizer = Adam(lr=0.005)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
json = model.to_json()
open('model/word-architecture.json', 'w').write(json)
Xtrain, Xtest, Ytrain, Ytest = train_test_split(encoder_input_data, target_texts, test_size=0.2, random_state=42)
print(len(Xtrain))
print(len(Xtest))
train_gen = generate_batch(Xtrain, Ytrain)
test_gen = generate_batch(Xtest, Ytest)
train_num_batches = len(Xtrain) // BATCH_SIZE
test_num_batches = len(Xtest) // BATCH_SIZE
checkpoint = ModelCheckpoint(filepath=WEIGHT_FILE_PATH, save_best_only=True)
model.fit_generator(generator=train_gen, steps_per_epoch=train_num_batches,
epochs=NUM_EPOCHS,
verbose=1, validation_data=test_gen, validation_steps=test_num_batches, callbacks=[checkpoint])
encoder_model = Model(encoder_inputs, encoder_states)
encoder_model.save('model/encoder-weights.h5')
new_decoder_inputs = Input(batch_shape=(1, None, num_decoder_tokens), name='new_decoder_inputs')
new_decoder_lstm = LSTM(units=HIDDEN_UNITS, return_state=True, return_sequences=True, name='new_decoder_lstm', stateful=True)
new_decoder_outputs, _, _ = new_decoder_lstm(new_decoder_inputs)
new_decoder_dense = Dense(units=num_decoder_tokens, activation='softmax', name='new_decoder_dense')
new_decoder_outputs = new_decoder_dense(new_decoder_outputs)
new_decoder_lstm.set_weights(decoder_lstm.get_weights())
new_decoder_dense.set_weights(decoder_dense.get_weights())
new_decoder_model = Model(new_decoder_inputs, new_decoder_outputs)
new_decoder_model.save('model/decoder-weights.h5')