-
Notifications
You must be signed in to change notification settings - Fork 0
/
section_train.py
355 lines (291 loc) · 15 KB
/
section_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import argparse
import os
from datetime import datetime
from os.path import join as pjoin
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
from tensorboardX import SummaryWriter
from torch.utils import data
from tqdm import tqdm
import core.loss
import torchvision.utils as vutils
from core.augmentations import (
Compose, RandomHorizontallyFlip, RandomRotate, AddNoise)
from core.loader.data_loader import *
from core.metrics import runningScore
from GCDGCNN.model import GCDGCNN
from core.utils import np_to_tb
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--arch', nargs='?', type=str, default='GCDGCNN',
help='Architecture to use')
parser.add_argument('--n_epoch', nargs='?', type=int, default=100,
help='# of the epochs')
parser.add_argument('--batch_size', nargs='?', type=int, default=21,
help='Batch Size')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--clip', nargs='?', type=float, default=0.1,
help='Max norm of the gradients if clipping. Set to zero to disable. ')
parser.add_argument('--per_val', nargs='?', type=float, default=0.1,
help='percentage of the training data for validation')
parser.add_argument('--pretrained', nargs='?', type=bool, default=False,
help='Pretrained models not supported. Keep as False for now.')
parser.add_argument('--aug', nargs='?', type=bool, default=False,
help='Whether to use data augmentation.')
parser.add_argument('--class_weights', nargs='?', type=bool, default=False,
help='Whether to use class weights to reduce the effect of class imbalance')
parser.add_argument('--depth_lim', nargs='?', type=int, default=2,
help='the limit on the level of depth when constructing graphs')
parser.add_argument('--k', nargs='?', type=float, default=0.5,
help='the neighbors to width ratio')
args = parser.parse_args()
def split_train_val(args, per_val=0.1, p=1):
# create inline and crossline sections for training and validation:
loader_type = 'section'
labels = np.load(pjoin('data', 'train', 'train_labels.npy'))
i_list = list(np.arange(0, labels.shape[0], p))
i_list = ['i_'+str(inline) for inline in i_list]
x_list = list(np.arange(0, labels.shape[1], p))
x_list = ['x_'+str(crossline) for crossline in x_list]
list_train_val = i_list + x_list
def train(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Generate the train and validation sets for the model:
split_train_val(args, per_val=args.per_val)
current_time = datetime.now().strftime('%b%d_%H%M%S')
log_dir = os.path.join('runs', current_time +
"_{}".format(args.arch))
writer = SummaryWriter(log_dir=log_dir)
# Setup Augmentations
if args.aug:
data_aug = Compose(
[RandomRotate(10), RandomHorizontallyFlip(), AddNoise()])
else:
data_aug = None
train_set = section_loader(is_transform=True,
split='train',
augmentations=data_aug)
# Without Augmentation:
val_set = section_loader(is_transform=True,
split='val',)
n_classes = train_set.n_classes
# Create sampler:
shuffle = False # must turn False if using a custom sampler
with open(pjoin('data', 'splits', 'section_train.txt'), 'r') as f:
train_list = f.read().splitlines()
with open(pjoin('data', 'splits', 'section_val.txt'), 'r') as f:
val_list = f.read().splitlines()
class CustomSamplerTrain(torch.utils.data.Sampler):
def __iter__(self):
char = ['i' if np.random.randint(2) == 1 else 'x']
self.indices = [idx for (idx, name) in enumerate(
train_list) if char[0] in name]
return (self.indices[i] for i in torch.randperm(len(self.indices)))
class CustomSamplerVal(torch.utils.data.Sampler):
def __iter__(self):
char = ['i' if np.random.randint(2) == 1 else 'x']
self.indices = [idx for (idx, name) in enumerate(
val_list) if char[0] in name]
return (self.indices[i] for i in torch.randperm(len(self.indices)))
trainloader = data.DataLoader(train_set,
batch_size=args.batch_size,
sampler=CustomSamplerTrain(train_list),
num_workers=4,
shuffle=shuffle)
valloader = data.DataLoader(val_set,
batch_size=args.batch_size,
sampler=CustomSamplerVal(val_list),
num_workers=4)
# Setup Metrics
running_metrics = runningScore(n_classes)
running_metrics_val = runningScore(n_classes)
# Setup Model
if args.resume is not None:
if os.path.isfile(args.resume):
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
model = torch.load(args.resume)
else:
print("No checkpoint found at '{}'".format(args.resume))
else:
model = GCDGCNN(out_channels=6, depth_lim=args.depth_lim, k=args.k)
# Use as many GPUs as we can
model = torch.nn.DataParallel(
model, device_ids=range(torch.cuda.device_count()))
model = model.to(device) # Send to GPU
print(torch.cuda.device_count())
# PYTROCH NOTE: ALWAYS CONSTRUCT OPTIMIZERS AFTER MODEL IS PUSHED TO GPU/CPU,
# Check if model has custom optimizer / loss
if hasattr(model.module, 'optimizer'):
print('Using custom optimizer')
optimizer = model.module.optimizer
else:
# optimizer = torch.optim.Adadelta(model.parameters())
optimizer = torch.optim.Adam(model.parameters(), amsgrad=True)
loss_fn = core.loss.cross_entropy
if args.class_weights:
# weights are inversely proportional to the frequency of the classes in the training set
class_weights = torch.tensor(
[0.7151, 0.8811, 0.5156, 0.9346, 0.9683, 0.9852], device=device, requires_grad=False)
else:
class_weights = None
best_iou = -100.0
class_names = ['upper_ns', 'middle_ns', 'lower_ns',
'rijnland_chalk', 'scruff', 'zechstein']
for arg in vars(args):
text = arg + ': ' + str(getattr(args, arg))
writer.add_text('Parameters/', text)
# training
for epoch in range(args.n_epoch):
# for epoch in range(60):
# Training Mode:
model.train()
loss_train, total_iteration = 0, 0
for i, (images, labels) in enumerate(trainloader):
image_original, labels_original = images, labels
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
pred = outputs.detach().max(1)[1].cpu().numpy()
gt = labels.detach().cpu().numpy()
running_metrics.update(gt, pred)
loss = loss_fn(input=outputs, target=labels, weight=class_weights)
loss_train += loss.item()
loss.backward()
# gradient clipping
if args.clip != 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
total_iteration = total_iteration + 1
if (i) % 20 == 0:
print("Epoch [%d/%d] training Loss: %.4f" %
(epoch + 1, args.n_epoch, loss.item()))
# (epoch + 1, 60, loss.item()))
numbers = [0]
if i in numbers:
# number 0 image in the batch
tb_original_image = vutils.make_grid(
image_original[0][0], normalize=True, scale_each=True)
writer.add_image('train/original_image',
tb_original_image, epoch + 1)
labels_original = labels_original.numpy()[0]
correct_label_decoded = train_set.decode_segmap(
np.squeeze(labels_original))
writer.add_image('train/original_label',
np_to_tb(correct_label_decoded), epoch + 1)
out = F.softmax(outputs, dim=1)
# this returns the max. channel number:
prediction = out.max(1)[1].cpu().numpy()[0]
# this returns the confidence:
confidence = out.max(1)[0].cpu().detach()[0]
tb_confidence = vutils.make_grid(
confidence, normalize=True, scale_each=True)
decoded = train_set.decode_segmap(np.squeeze(prediction))
writer.add_image('train/predicted', np_to_tb(decoded), epoch + 1)
writer.add_image('train/confidence', tb_confidence, epoch + 1)
unary = outputs.cpu().detach()
unary_max = torch.max(unary)
unary_min = torch.min(unary)
unary = unary.add((-1*unary_min))
unary = unary/(unary_max - unary_min)
for channel in range(0, len(class_names)):
decoded_channel = unary[0][channel]
tb_channel = vutils.make_grid(
decoded_channel, normalize=True, scale_each=True)
writer.add_image(
f'train_classes/_{class_names[channel]}', tb_channel, epoch + 1)
# Average metrics, and save in writer()
loss_train /= total_iteration
score, class_iou = running_metrics.get_scores()
writer.add_scalar('train/Pixel Acc', score['Pixel Acc: '], epoch+1)
writer.add_scalar('train/Mean Class Acc',
score['Mean Class Acc: '], epoch+1)
writer.add_scalar('train/Freq Weighted IoU',
score['Freq Weighted IoU: '], epoch+1)
writer.add_scalar('train/Mean_IoU', score['Mean IoU: '], epoch+1)
running_metrics.reset()
writer.add_scalar('train/loss', loss_train, epoch+1)
if args.per_val != 0:
with torch.no_grad(): # operations inside don't track history
# Validation Mode:
model.eval()
loss_val, total_iteration_val = 0, 0
for i_val, (images_val, labels_val) in tqdm(enumerate(valloader)):
image_original, labels_original = images_val, labels_val
images_val, labels_val = images_val.to(
device), labels_val.to(device)
outputs_val = model(images_val)
pred = outputs_val.detach().max(1)[1].cpu().numpy()
gt = labels_val.detach().cpu().numpy()
running_metrics_val.update(gt, pred)
loss = loss_fn(input=outputs_val, target=labels_val)
total_iteration_val = total_iteration_val + 1
if (i_val) % 20 == 0:
print("Epoch [%d/%d] validation Loss: %.4f" %
(epoch, args.n_epoch, loss.item()))
# (epoch, 60, loss.item()))
numbers = [0]
if i_val in numbers:
# number 0 image in the batch
tb_original_image = vutils.make_grid(
image_original[0][0], normalize=True, scale_each=True)
writer.add_image('val/original_image',
tb_original_image, epoch)
labels_original = labels_original.numpy()[0]
correct_label_decoded = train_set.decode_segmap(
np.squeeze(labels_original))
writer.add_image('val/original_label',
np_to_tb(correct_label_decoded), epoch + 1)
out = F.softmax(outputs_val, dim=1)
# this returns the max. channel number:
prediction = out.max(1)[1].cpu().detach().numpy()[0]
# this returns the confidence:
confidence = out.max(1)[0].cpu().detach()[0]
tb_confidence = vutils.make_grid(
confidence, normalize=True, scale_each=True)
decoded = train_set.decode_segmap(np.squeeze(prediction))
writer.add_image('val/predicted', np_to_tb(decoded), epoch + 1)
writer.add_image('val/confidence',tb_confidence, epoch + 1)
unary = outputs.cpu().detach()
unary_max, unary_min = torch.max(
unary), torch.min(unary)
unary = unary.add((-1*unary_min))
unary = unary/(unary_max - unary_min)
for channel in range(0, len(class_names)):
tb_channel = vutils.make_grid(
unary[0][channel], normalize=True, scale_each=True)
writer.add_image(
f'val_classes/_{class_names[channel]}', tb_channel, epoch + 1)
score, class_iou = running_metrics_val.get_scores()
for k, v in score.items():
print(k, v)
writer.add_scalar(
'val/Pixel Acc', score['Pixel Acc: '], epoch+1)
writer.add_scalar('val/Mean IoU', score['Mean IoU: '], epoch+1)
writer.add_scalar('val/Mean Class Acc',
score['Mean Class Acc: '], epoch+1)
writer.add_scalar('val/Freq Weighted IoU',
score['Freq Weighted IoU: '], epoch+1)
writer.add_scalar('val/loss', loss.item(), epoch+1)
running_metrics_val.reset()
# if score['Mean IoU: '] >= best_iou and score['Class Accuracy: '][4]>0 and score['Class Accuracy: '][5]>0:
if score['Mean IoU: '] >= best_iou:
print('\n\n\n\nModel Saved!')
best_iou = score['Mean IoU: ']
model_dir = os.path.join(
log_dir, f"{args.arch}_model.pkl")
torch.save(model, model_dir)
print(best_iou)
else: # validation is turned off:
# just save the latest model:
if (epoch+1) % 10 == 0:
model_dir = os.path.join(
log_dir, f"{args.arch}_ep{epoch+1}_model.pkl")
torch.save(model, model_dir)
with open(os.path.join(
log_dir, str(int(best_iou*1e6))+'.txt'), 'w') as f:
f.write('Best IoU = ' + str(best_iou) + '\nDepth Limit = ' + str(args.depth_lim) + '\nk = ' + str(args.k))
writer.close()
if __name__ == '__main__':
train(args)