-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrainer.py
466 lines (414 loc) · 21.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""Copyright © 2020-present, Swisscom (Schweiz) AG.
All rights reserved.
This class is used for training models and is the core of the framework.
With the help of this class, the user of the framework is able to train and
develop models. The framework gets all the relevant objects as an input, and
all the parameters from a YAML file or a dictionary with the parameters, it
instantiates all the relevant helper objects for training the model and does
the training.
"""
from copsolver.frank_wolfe_solver import FrankWolfeSolver
from copsolver.analytical_solver import AnalyticalSolver
from validator import Validator
from paretomanager.pareto_manager_class import ParetoManager
from commondescentvector.multi_objective_cdv import MultiObjectiveCDV
from metric.metric_at_k import MetricAtK
from loss.loss_class import Loss
import torch.nn as nn
from dataloader.mamo_data_handler import MamoDataHandler
import time
import numpy as np
import os
import torch
import torch.optim as optim
from torch.autograd import Variable
import yaml
import logging
logger = logging.getLogger('main')
logger.setLevel(logging.INFO)
class Trainer():
"""The trainer class, the core of the framework, used for training models.
All the needed objects for this class have to be given through the constructor.
Additionally, the other parameters needed by this trainer have to be supplied
in a YAML file named 'trainer_params.yaml' or a dictionary containing the parameters.
For more details about the parameters supplied in this YAML file, please refer to
'Attributes from the YAML file' section below.
Attributes:
data_handler: A MamoDataHandler object which feeds the data set to the trainer.
model: A torch.nn.Module object which is the model that is being trained.
losses: A list of Loss objects which represent the losses/objectives that the
model is trained on.
validation_metrics: A list of MetricAtK objects which are used to evaluate
the model while the training and validation process.
save_to_path: A path to a directory where the trained models from the Pareto
front will be saved during training.
device: A variable indicating whether the model is trained on the gpu or on
the cpu.
_train_dataloader: A dataloader object used for feeding the data to the trainer.
pareto_manager: A ParetoManager which is responsible for maintaining a pareto
front of models and saving these models on permanent storage.
validator: A Validator object which is used to evaluate the models on multiple
objective and multiple losses.
max_empirical_losses: A list of losses (float) which is the approximation of the
maximum empirical losses the model will have.
common_descent_vector: A MultiObjectiveCDV, is responsible for combining the multiple
gradients from the multiple losses into a single gradient.
optimizer: A pytorch optimizer which is used to train the model.
Attributes from the YAML file:
seed: An integer, used to initialize the numpy and pytorch random seeds, default = 42.
normalize_gradients: A boolean value, indicating whether to normalize the gradients
while training the model or not, default = True.
learning_rate: A float value, the learning rate that is given to the pytorch
optimizer, if the optimizer is not given in the constructor, default = 1e-3.
batch_size_training: An integer value, representing the batch sizes in which the data is
fed to the trainer, default = 500.
shuffle_training: A boolean value, indicating if the training data should be shuffled,
default = True.
drop_last_batch_training: A boolean value, indicating to drop the last incomplete batch,
if the training dataset size is not divisible by the batch size, default = True.
batch_size_validation: An integer value, representing the batch sizes in which the data is
fed to the validator, default = 500.
shuffle_validation: A boolean value, indicating if the validation data should be shuffled,
default = True.
drop_last_batch_validation: A boolean value, indicating to drop the last incomplete batch,
if the validation dataset size is not divisible by the batch size, default = False.
number_of_epochs: An integer value, indicating for how many epochs should the model
be trained, default = 50.
frank_wolfe_max_iter: An integer value, indicating the maximum number of iterations
to be used by the frank wolfe algorithm in the commonDescentVector object,
default = 100.
anneal: A boolean value, indicating if annealing should be used while training the
model, default = True.
beta_start: If the anneal is used, this will be the first value of the beta,
default = 0.
beta_cap: If the anneal is used, this will be the maximum value of the beta,
default = 0.3.
beta_step: If the anneal is used, this is the amount by which to increase the beta
every batch, default = 0.3/10000.
"""
def __init__(self, data_handler, model, losses, validation_metrics,
save_to_path, params='yaml_files/trainer_params.yaml',
optimizer=None):
"""The constructor which initializes a trainer object.
Arguments:
data_handler: A MamoDataHandler object which feeds the data set to the trainer.
model: A torch.nn.Module object which is the model that is being trained.
losses: A list of Loss objects which represent the losses/objectives that the
model is trained on.
validation_metrics: A list of MetricAtK objects which are used to evaluate
the model while the training and validation process.
save_to_path: A path to a directory where the trained models from the Pareto
front will be saved during training.
params: Path to the yaml file with the trainger parameters, or a dictionary
containing the parameters.
optimizer: A pytorch optimizer which is used to train the model, if it is None,
a default Adam optimizer is created.
Raises:
TypeError: If any of the arguments passed are not an instance of the expected
class or are None, a TypeError will be raised.
ValueError: If the directory which save_to_path references is not empty, a
ValueError will be raised.
"""
logger.info('Trainer: Started with initializing trainer...')
self._check_input_(data_handler, model, losses,
validation_metrics, save_to_path, optimizer)
self._read_params(params)
self.data_handler = data_handler
self.model = model
self.losses = losses
logger.info('Trainer: Losses: ')
logger.info('Trainer: '.join(['%s ' % loss.name for loss in self.losses]))
self.validation_metrics = validation_metrics
logger.info('Trainer: Validation metrics: ')
logger.info('Trainer: '.join(['%s ' % m.get_name() for m in self.validation_metrics]))
self.save_to_path = save_to_path
logger.info('Trainer: Saving models to: %s' % self.save_to_path)
self.optimizer = optimizer
# set cuda if available
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
logger.info('Trainer: Training on device: %s' % self.device)
self._init_objects()
logger.info('Trainer: Initialization done.')
def _check_input_(self, data_handler, model, losses, validation_metrics, save_to_path, optimizer):
"""A helper function for the __init__ to check the input of the constructor.
"""
if not isinstance(data_handler, MamoDataHandler):
raise TypeError(
'Please check you are using the right data handler object, or the right order of the attributes!')
if not isinstance(model, nn.Module):
raise TypeError(
'Please check you are using the right model object, or the right order of the attributes!')
if not hasattr(model, 'initialize_model'):
raise TypeError(
'Please check if your models has initialize_model() method defined!')
# check if losses is None
if losses is None:
raise ValueError(
'The losses are None, please make sure to give valid losses!')
if not all([isinstance(x, Loss) for x in losses]):
raise TypeError(
'Please check you are using the right loss objects, or the right order of the attributes!')
# check if there are at least two losses
if len(losses) < 2:
raise ValueError(
'Please check you have defined at least two losses,'
+ ' for training with one loss use the Single Objective Loss class!')
# check if validation metrics is None
if validation_metrics is None:
raise ValueError(
'The validation_metrics are None, please make sure to give valid validation_metrics!')
if not all([isinstance(x, MetricAtK) for x in validation_metrics]):
raise TypeError(
'Please check you are using the right metric objects, or the right order of the attributes!')
# check if length is at least 1
if len(validation_metrics) == 0:
raise ValueError(
'Please check you have defined at least one validation metric!')
if not os.path.exists(save_to_path):
os.mkdir(save_to_path)
# checking if the save_to_path directory is empty
if os.listdir(save_to_path):
raise ValueError(
'Please make sure that the directory where you want to save the models is empty!')
# if the optimizer is not None, than has to be pytorch optimizer object
if optimizer is not None:
if not isinstance(optimizer, optim.Optimizer):
raise TypeError(
'Please make sure that the optimizer is a pytorch Optimizer object!')
def _read_params(self, params):
"""A helper function for the __init__ to read the configuration yaml file.
"""
logger.info('Trainer: Reading trainer parameters.')
if type(params) is str:
with open(params, 'r') as stream:
params = yaml.safe_load(stream)
self.seed = int(params.get('seed', 42))
logger.info('Trainer: Random seed: %d' % self.seed)
self.normalize_gradients = bool(
params.get('normalize_gradients', True))
logger.info('Trainer: Normalize gradients: %s' %
self.normalize_gradients)
self.learning_rate = float(params.get('learning_rate', 1e-3))
logger.info('Trainer: Learning rate: %f' % self.learning_rate)
self.batch_size_training = int(params.get('batch_size_training', 500))
logger.info('Trainer: Batch size training: %d' %
self.batch_size_training)
self.shuffle_training = bool(params.get('shuffle_training', True))
logger.info('Trainer: Shuffle training: %d' %
self.shuffle_training)
self.drop_last_batch_training = bool(
params.get('drop_last_batch_training', True))
logger.info('Trainer: Drop last batch training: %d' %
self.drop_last_batch_training)
self.batch_size_validation = int(
params.get('batch_size_validation', 500))
logger.info('Trainer: Batch size validation: %d' %
self.batch_size_validation)
self.shuffle_validation = bool(params.get('shuffle_validation', True))
logger.info('Trainer: Shuffle validation: %d' %
self.shuffle_validation)
self.drop_last_batch_validation = bool(
params.get('drop_last_batch_validation', False))
logger.info('Trainer: Drop last batch validation: %d' %
self.drop_last_batch_validation)
self.number_of_epochs = int(params.get('number_of_epochs', 50))
logger.info('Trainer: Number of epochs: %f' % self.number_of_epochs)
self.frank_wolfe_max_iter = int(
params.get('frank_wolfe_max_iter', 100))
logger.info('Trainer: Frank Wolfe max iterations: %d' %
self.frank_wolfe_max_iter)
self.anneal = bool(params.get('anneal', True))
logger.info('Trainer: Annealing: %s' % self.anneal)
if self.anneal and ('beta_start' not in params or 'beta_cap' not in params or 'beta_step' not in params):
raise ValueError(('Please make sure that if anneal is set to True, '
'the beta_start, beta_cap and beta_step are all '
'present in the parameters yaml file!'))
if self.anneal:
self.beta_start = float(params.get('beta_start', 0))
logger.info('Trainer: Beta start: %f' % self.beta_start)
self.beta_cap = float(params.get('beta_cap', 0.3))
logger.info('Trainer: Beta cap: %f' % self.beta_cap)
self.beta_step = float(eval(params.get('beta_step', '0.3/10000')))
logger.info('Trainer: Beta step: %f' % self.beta_step)
def _init_objects(self):
"""A helper function for the __init__ to initialize different objects.
"""
logger.info('Trainer: Initializing helper trainer objects.')
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.model.initialize_model()
self.model.to(self.device)
self._train_dataloader = self.data_handler.get_train_dataloader(batch_size=self.batch_size_training,
shuffle=self.shuffle_training,
drop_last=self.drop_last_batch_training)
self.pareto_manager = ParetoManager(PATH=self.save_to_path)
val_dataloader = self.data_handler.get_validation_dataloader(
batch_size=self.batch_size_validation, shuffle=self.shuffle_validation,
drop_last=self.drop_last_batch_validation)
self.validator = Validator(
self.model, val_dataloader, self.validation_metrics, self.losses)
self.max_empirical_losses = None
if self.normalize_gradients:
self.max_empirical_losses = self._compute_max_empirical_losses()
logger.info('Trainer: Max empirical losses: %s' %
self.max_empirical_losses)
copsolver = None
if len(self.losses) <= 2:
copsolver = AnalyticalSolver()
else:
copsolver = FrankWolfeSolver(max_iter=self.frank_wolfe_max_iter)
self.common_descent_vector = MultiObjectiveCDV(
copsolver=copsolver, max_empirical_losses=self.max_empirical_losses,
normalized=self.normalize_gradients)
# create default optimizer
if self.optimizer is None:
self.optimizer = optim.Adam(
self.model.parameters(), lr=self.learning_rate)
def _compute_max_empirical_losses(self):
"""A helper function for approximating the maximum empirical loss the model
could have. It is called by _init_objects function.
"""
# approximate the max loss empirically
max_losses = [0] * len(self.losses)
cnt = 0
for batch in self._train_dataloader:
# fetch data
x = batch[0]
x = Variable(x).to(self.device)
y = batch[1]
y = Variable(y).to(self.device)
cnt += 1
# forward pass
model_output = self.model(x)
for i, loss in enumerate(self.losses):
# if annealing is done, the KL divergence is ignored when computing
# the max empirical loss, therefore the anneal is set to 0
if self.anneal:
L = loss.compute_loss(y, model_output, anneal=0)
else:
L = loss.compute_loss(y, model_output)
# compute the moving average term
max_losses[i] = (cnt - 1) / cnt * \
max_losses[i] + 1 / cnt * L.item()
return max_losses
def _get_gradient_np(self):
"""A helper function for obtaining the gradients of the model in a numpy
array.
Before the first backward call, all grad attributes are set to None, and
that is when the exception is thrown, and the parameters are returned.
After the first backward pass, the gradient values are available and are
returned by this function.
"""
gradient = []
try:
for p in self.model.parameters():
gradient.append(p.grad.cpu().detach().numpy().ravel())
return np.concatenate(gradient)
except Exception:
size = 0
for p in self.model.parameters():
size += len(p.cpu().detach().numpy().ravel())
return np.zeros(shape=size)
def train(self):
"""The main method of this class. By calling this method, the traning process
starts.
"""
# model training
logger.info('Trainer: Started training...')
if self.anneal:
beta = self.beta_start
for epoch in range(self.number_of_epochs):
# start time for current epoch
start_time = time.time()
# statistics
training_loss = 0
average_alpha = [0] * len(self.losses)
cnt = 0
# set model in train mode
self.model.train()
# do training
for batch in self._train_dataloader:
# create x
x = batch[0]
x = Variable(x).to(self.device)
y = batch[1]
y = Variable(y).to(self.device)
# anneal beta
if self.anneal:
beta += self.beta_step
beta = beta if beta < self.beta_cap else self.beta_cap
# calculate the gradients
gradients = []
for i, loss in enumerate(self.losses):
# forward pass
model_output = self.model(x)
# calculate loss
if self.anneal:
L = loss.compute_loss(y, model_output, anneal=beta)
else:
L = loss.compute_loss(y, model_output)
# zero gradient
self.optimizer.zero_grad()
# backward pass
L.backward()
# get gradient for correctness objective
gradients.append(self._get_gradient_np())
# calculate the losses
losses_computed = []
# forward pass
model_output = self.model(x)
for i, loss in enumerate(self.losses):
if self.anneal:
L = loss.compute_loss(y, model_output, anneal=beta)
else:
L = loss.compute_loss(y, model_output)
losses_computed.append(L)
# get the final loss to compute the common descent vector
final_loss, alphas = self.common_descent_vector.get_descent_vector(
losses_computed, gradients)
# zero gradient
self.optimizer.zero_grad()
# backward pass
final_loss.backward()
# update parameters
self.optimizer.step()
# statistics....
cnt += 1
# moving average loss
training_loss = (cnt - 1) / cnt * \
training_loss + 1 / cnt * final_loss.item()
# moving average alpha
for i, alpha in enumerate(alphas):
average_alpha[i] = (cnt - 1) / cnt * \
average_alpha[i] + 1 / cnt * alpha
# time in milliseconds for current batch
batch_time = (time.time() - start_time) / cnt * 1000
# log progress
if cnt % 10 == 0:
average_alpha_string = ', '.join(
['%.4f']*len(average_alpha)) % tuple(average_alpha)
logger.info('Trainer: Batch: %d/%d, Batch time: %.2fms,' %
(cnt,
int(np.round(self.data_handler.get_traindata_len() / self.batch_size_training)),
batch_time)
+ ' Training loss: %.3f, Alphas: [%s]' %
(training_loss, average_alpha_string))
# do validation
val_metrics, val_objectives = self.validator.evaluate(
disable_anneal=self.anneal, verbose=False)
val_loss = self.validator.combine_objectives(
val_objectives, alphas=average_alpha, max_normalization=self.max_empirical_losses)
# add the solution to the pareto manager
self.pareto_manager.add_solution(val_metrics, self.model)
# calculate epoch time
epoch_time = time.time() - start_time
val_metrics_string = ', '.join(
['%.4f']*len(val_metrics)) % tuple(val_metrics)
val_objectives_string = ', '.join(
['%.4f']*len(val_objectives)) % tuple(val_objectives)
logger.info('Trainer: Epoch: %d, Epoch time: %.2fs, Training loss: %.3f,' %
(epoch + 1, epoch_time, training_loss)
+ ' Validation loss: %.3f, Validation metrics: [%s], Validation losses: [%s]' %
(val_loss, val_metrics_string, val_objectives_string))
return val_loss