forked from kyoukuntaro/FCSN_for_ChangeDetection_IGARSS2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_dataset.py
54 lines (51 loc) · 1.94 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import os
import matplotlib.pyplot as plt
from PIL import Image
IMAGE_SIZE = 112
IMAGE_NUMBER = 2000
VISUALIZE = 0
MAIN_DIR = './'
IMAGE_FOLDER = 'images'
LABEL_FOLDER = 'labels'
def main():
main_dir = MAIN_DIR
images_dir = main_dir + IMAGE_FOLDER
labels_dir = main_dir + LABEL_FOLDER
city_nm_ls = os.listdir(labels_dir)
city_nm_ls.remove('README.txt')
if not('data' in os.listdir(main_dir)):
os.mkdir(main_dir+'data')
for city_nm in city_nm_ls:
img_file1 = images_dir + city_nm + '/pair/img1.png'
img1 = Image.open(img_file1)
img1 = np.asarray(img1)
img_file2 = images_dir + city_nm + '/pair/img2.png'
img2 = Image.open(img_file2)
img2 = np.asarray(img2)
lbl_file = labels_dir + city_nm + '/cm/cm.png'
lbl = Image.open(lbl_file)
lbl = np.asarray(lbl)
for i in range(int((IMAGE_NUMBER-1)/len(city_nm_ls))+1):
x = np.random.randint(img1.shape[0]-IMAGE_SIZE)
y = np.random.randint(img1.shape[1]-IMAGE_SIZE)
mini_img1 = img1[x:x+IMAGE_SIZE,y:y+IMAGE_SIZE,:]
mini_img2 = img2[x:x+IMAGE_SIZE,y:y+IMAGE_SIZE,:]
mini_lbl = lbl[x:x+IMAGE_SIZE,y:y+IMAGE_SIZE]
data = np.zeros([7,IMAGE_SIZE,IMAGE_SIZE])
data[:3,:,:] = mini_img1.transpose([2,0,1])
data[3:6,:,:] = mini_img2.transpose([2,0,1])
data[6,:,:] = mini_lbl[:,:,0]
file_nm = main_dir + 'data/' + city_nm + str(i).zfill(3) + '.npy'
np.save(file_nm, data)
if VISUALIZE:
plt.figure(figsize=(20,30))
plt.subplot(1,3,1)
plt.imshow(mini_img1)
plt.subplot(1,3,2)
plt.imshow(mini_img2)
plt.subplot(1,3,3)
plt.imshow(mini_lbl[:,:,0])
plt.show()
if __name__=='__main__':
main