forked from kyoukuntaro/FCSN_for_ChangeDetection_IGARSS2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (67 loc) · 2.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import os
import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import Dataset, DataLoader
from model import FC_EF
class OSCD(Dataset):
def __init__(self, dir_nm):
super(OSCD, self).__init__()
self.dir_nm = dir_nm
self.file_ls = os.listdir(dir_nm)
self.file_size = len(self.file_ls)
def __getitem__(self, idx):
mat = np.load(self.dir_nm + self.file_ls[idx]).astype(np.float)
x1 = mat[:3,:,:]/255
x2 = mat[3:6,:,:]/255
lbl = mat[6,:,:]/255
return x1, x2, lbl
def __len__(self):
return self.file_size
def main():
train_dir = './data/train/'
test_dir = './data/test/'
lr = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_data = OSCD(train_dir)
train_dataloader = DataLoader(train_data, batch_size=10, shuffle=True)
test_data = OSCD(test_dir)
test_dataloader = DataLoader(test_data, batch_size=1, shuffle=True)
model = FC_EF().to(device, dtype=torch.float)
optimizer = SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
criterion = nn.CrossEntropyLoss()
for epoch in range(10):
loss_v = []
model.train()
for i, data in enumerate(train_dataloader):
x1, x2, lbl = data
x1 = x1.to(device, dtype=torch.float)
x2 = x2.to(device, dtype=torch.float)
lbl = lbl.to(device, dtype=torch.long)
y = model(x1,x2)
optimizer.zero_grad()
loss = criterion(y, lbl)
loss.backward()
optimizer.step()
loss_v.append(loss.item())
if(i%20==0 and i>0):
print(np.mean(loss_v))
loss_v = []
loss_v = []
model.eval()
for i, data in enumerate(test_dataloader):
x1, x2, lbl = data
x1 = x1.to(device, dtype=torch.float)
x2 = x2.to(device, dtype=torch.float)
lbl = lbl.to(device, dtype=torch.long)
y = model(x1, x2)
optimizer.zero_grad()
loss = criterion(y, lbl)
loss.backward()
optimizer.step()
loss_v.append(loss.item())
print('test:', np.mean(loss_v))
loss_v = []
if __name__ == '__main__':
main()