-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbot.py
243 lines (201 loc) · 9.97 KB
/
bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import json
import openai
import re
from diffusers import DiffusionPipeline, StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoTokenizer, AutoModel
import torch
import argparse
import flask
import typing
import traceback
ps = argparse.ArgumentParser()
ps.add_argument("--config", default="config.json", help="Configuration file")
args = ps.parse_args()
with open(args.config) as f:
config_json = json.load(f)
class GlobalData:
# OPENAI_ORGID = config_json[""]
OPENAI_APIKEY = config_json["OpenAI-GPT"]["OpenAI-Key"]
OPENAI_MODEL = config_json["OpenAI-GPT"]["GPT-Model"]
OPENAI_MODEL_TEMPERATURE = int(config_json["OpenAI-GPT"]["Temperature"])
OPENAI_MODEL_MAXTOKENS = min(2048, int(config_json["OpenAI-GPT"]["MaxTokens"]))
CHATGLM_MODEL = config_json["ChatGLM"]["GPT-Model"]
context_for_users = {}
context_for_groups = {}
GENERATE_PICTURE_ARG_PAT = re.compile("(\(|()([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|))")
GENERATE_PICTURE_ARG_PAT2 = re.compile("(\(|()([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)[ \n\t]+([0-9]+)(\)|))")
GENERATE_PICTURE_NEG_PROMPT_DELIMETER = re.compile("\n+")
GENERATE_PICTURE_MAX_ITS = 200 #最大迭代次数
USE_OPENAIGPT = False
USE_CHATGLM = False
if config_json["OpenAI-GPT"]["Enable"]:
print(f"Use OpenAI GPT Model({GlobalData.OPENAI_MODEL}).")
USE_OPENAIGPT = True
elif config_json["ChatGLM"]["Enable"]:
print(f"Use ChatGLM({GlobalData.CHATGLM_MODEL}) as GPT-Model.")
chatglm_tokenizer = AutoTokenizer.from_pretrained(GlobalData.CHATGLM_MODEL, trust_remote_code=True)
chatglm_model = AutoModel.from_pretrained(GlobalData.CHATGLM_MODEL, trust_remote_code=True)
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
chatglm_model = chatglm_model.to('mps')
elif torch.cuda.is_available():
chatglm_model = chatglm_model.to('cuda')
chatglm_model = chatglm_model.eval()
USE_CHATGLM = True
app = flask.Flask(__name__)
# 这个用于放行生成的任何图片,替换掉默认的NSFW检查器,公共场合慎重使用
def run_safety_nochecker(image, device, dtype):
print("警告:屏蔽了内容安全性检查,可能会产生有害内容")
return image, None
sd_args = {
"pretrained_model_name_or_path" : config_json["Diffusion"]["Diffusion-Model"],
"torch_dtype" : (torch.float16 if config_json["Diffusion"].get("UseFP16", True) else torch.float32)
}
sd_pipe = StableDiffusionPipeline.from_pretrained(**sd_args)
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
if config_json["Diffusion"]["NoNSFWChecker"]:
setattr(sd_pipe, "run_safety_checker", run_safety_nochecker)
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
sd_pipe = sd_pipe.to("mps")
elif torch.cuda.is_available():
sd_pipe = sd_pipe.to("cuda")
GPT_SUCCESS = 0
GPT_NORESULT = 1
GPT_ERROR = 2
def CallOpenAIGPT(prompts : typing.List[str]):
try:
res = openai.ChatCompletion.create(
model=config_json["OpenAI-GPT"]["GPT-Model"],
messages=prompts
)
if len(res["choices"]) > 0:
return (GPT_SUCCESS, res["choices"][0]["message"]["content"].strip())
else:
return (GPT_NORESULT, "")
except openai.InvalidRequestError as e:
return (GPT_ERROR, e)
except Exception as e:
traceback.print_exception(e)
return (GPT_ERROR, str(e))
def CallChatGLM(msg, history : typing.List[str]):
try:
resp, hist = chatglm_model.chat(chatglm_tokenizer, msg, history=history)
if isinstance(resp, tuple):
resp = resp[0]
return (GPT_SUCCESS, resp)
except Exception as e:
return (GPT_ERROR, str(e))
def add_context(uid : str, is_user : bool, msg : str):
if not uid in GlobalData.context_for_users:
GlobalData.context_for_users[uid] = []
if USE_OPENAIGPT:
GlobalData.context_for_users[uid].append({
"role" : "system",
"content" : msg
}
)
elif USE_CHATGLM:
GlobalData.context_for_users[uid].append(msg)
def get_context(uid : str):
if not uid in GlobalData.context_for_users:
GlobalData.context_for_users[uid] = []
return GlobalData.context_for_users[uid]
@app.route("/chat_clear", methods=['POST'])
def app_chat_clear():
data = json.loads(flask.globals.request.get_data())
GlobalData.context_for_users[data["user_id"]] = []
print(f"Cleared context for {data['user_id']}")
return ""
@app.route("/chat", methods=['POST'])
def app_chat():
data = json.loads(flask.globals.request.get_data())
#print(data)
uid = data["user_id"]
if not data["text"][-1] in ['?', '?', '.', '。', ',', ',', '!', '!']:
data["text"] += "。"
if USE_OPENAIGPT:
add_context(uid, True, data["text"])
#prompt = GlobalData.context_for_users[uid]
prompt = get_context(uid)
resp = CallOpenAIGPT(prompt=prompt)
#GlobalData.context_for_users[data["user_id"]] = (prompt + resp)
add_context(uid, False, resp[1])
#print(f"Prompt = {prompt}\nResponse = {resp[1]}")
elif USE_CHATGLM:
#prompt = GlobalData.context_for_users[uid]
prompt = get_context(uid)
resp = CallChatGLM(msg=data["text"], history=prompt)
add_context(uid, True, (data["text"], resp[1]))
else:
pass
if resp[0] == GPT_SUCCESS:
return json.dumps({"user_id" : data["user_id"], "text" : resp[1], "error" : False, "error_msg" : ""})
else:
return json.dumps({"user_id" : data["user_id"], "text" : "", "error" : True, "error_msg" : resp[1]})
@app.route("/draw", methods=['POST'])
def app_draw():
data = json.loads(flask.globals.request.get_data())
prompt = data["prompt"]
i = 0
for i in range(len(prompt)):
if prompt[i] == ':' or prompt[i] == ':':
break
if i == len(prompt):
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "格式不对,正确的格式是:生成图片:Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)]):Prompt"})
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT2, prompt[:i])
if not match_args is None:
W = int(match_args.group(2))
H = int(match_args.group(3))
ITS = int(match_args.group(4))
NUM_PIC = int(match_args.group(5))
else:
match_args = re.match(GlobalData.GENERATE_PICTURE_ARG_PAT, prompt[:i])
if not match_args is None:
W = int(match_args.group(2))
H = int(match_args.group(3))
ITS = int(match_args.group(4))
NUM_PIC = 1
else:
if len(prompt[:i].strip()) != 0:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "格式不对,正确的格式是:生成图片:Prompt 或者 生成图片(宽 高 迭代次数 [图片最大数量(缺省1)]):Prompt"})
else:
W = 768
H = 768
ITS = config_json.get('DefaultDiffutionIterations', 20)
NUM_PIC = 1
if W > 2500 or H > 2500:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "你要求的图片太大了,我不干了~"})
if ITS > GlobalData.GENERATE_PICTURE_MAX_ITS:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : f"迭代次数太多了,不要超过{GlobalData.GENERATE_PICTURE_MAX_ITS}次"})
prompt = prompt[(i+1):].strip()
prompts = re.split(GlobalData.GENERATE_PICTURE_NEG_PROMPT_DELIMETER, prompt)
prompt = prompts[0]
neg_prompt = None
if len(prompts) > 1:
neg_prompt = prompts[1]
print(f"Generating {NUM_PIC} picture(s) with prompt = {prompt} , negative prompt = {neg_prompt}")
try:
if NUM_PIC > 1 and torch.backends.mps.is_available(): #Apple silicon上的bug:https://github.com/huggingface/diffusers/issues/363
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True,
"error_msg" : "单prompt生成多张图像在Apple silicon上无法实现,相关讨论参考https://github.com/huggingface/diffusers/issues/363"})
images = sd_pipe(prompt=prompt, negative_prompt=neg_prompt, width=W, height=H, num_inference_steps=ITS, num_images_per_prompt=NUM_PIC).images[:NUM_PIC]
if len(images) == 0:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : "没有产生任何图像"})
filenames = []
for i, img in enumerate(images):
img.save(f"latest-{i}.png")
filenames.append(f"latest-{i}.png")
return json.dumps({"user_name" : data["user_name"], "filenames" : filenames, "error" : False, "error_msg" : ""})
except Exception as e:
return json.dumps({"user_name" : data["user_name"], "filenames" : [], "error" : True, "error_msg" : str(e)})
@app.route("/info", methods=['POST', 'GET'])
def app_info():
return "\n".join([f"GPT模型:{config_json['OpenAI-GPT']['GPT-Model'] if USE_OPENAIGPT else config_json['ChatGLM']['GPT-Model']}", f"Diffusion模型:{config_json['Diffusion']['Diffusion-Model']}",
"默认图片规格:768x768 RGB三通道", "Diffusion默认迭代轮数:20",
f"使用半精度浮点数 : {'是' if config_json['Diffusion'].get('UseFP16', True) else '否'}",
f"屏蔽NSFW检查:{'是' if config_json['Diffusion']['NoNSFWChecker'] else '否'}",
"清空上下文指令:重置上下文",
"生成图片指令:生成图片(宽 高 迭代次数):正面提示 换行写负面提示,其中(宽 高 迭代次数)和换行写的负面提示都是可以省略的"])
if __name__ == "__main__":
if USE_OPENAIGPT:
openai.api_key = GlobalData.OPENAI_APIKEY
app.run(host="0.0.0.0", port=11111)