-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_model.py
executable file
·396 lines (341 loc) · 13.7 KB
/
transfer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: Vassilis Choutas, [email protected]
from typing import Optional, Dict, Callable
import sys
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from loguru import logger
from transfermodel.utils import get_vertices_per_edge
from transfermodel.optimizers import build_optimizer, minimize
from transfermodel.utils import Tensor, batch_rodrigues, apply_deformation_transfer
from transfermodel.losses import build_loss
def summary_closure(gt_vertices, var_dict, body_model, mask_ids=None):
param_dict = {}
for key, var in var_dict.items():
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
body_model_output = body_model(
return_full_pose=True, get_skin=True, **param_dict)
est_vertices = body_model_output['vertices']
if mask_ids is not None:
est_vertices = est_vertices[:, mask_ids]
gt_vertices = gt_vertices[:, mask_ids]
v2v = (est_vertices - gt_vertices).pow(2).sum(dim=-1).sqrt().mean()
return {
'Vertex-to-Vertex': v2v * 1000}
def build_model_forward_closure(
body_model: nn.Module,
var_dict: Dict[str, Tensor],
per_part: bool = True,
part_key: Optional[str] = None,
jidx: Optional[int] = None,
part: Optional[Tensor] = None
) -> Callable:
if per_part:
cond = part is not None and part_key is not None and jidx is not None
assert cond, (
'When per-part is True, "part", "part_key", "jidx" must not be'
' None.'
)
def model_forward():
param_dict = {}
for key, var in var_dict.items():
if part_key == key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
param_dict[key][:, jidx] = batch_rodrigues(
part.reshape(-1, 3)).reshape(-1, 3, 3)
else:
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
return body_model(
return_full_pose=True, get_skin=True, **param_dict)
else:
def model_forward():
param_dict = {}
for key, var in var_dict.items():
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
return body_model(return_full_pose=True, get_skin=True,
**param_dict)
return model_forward
def build_edge_closure(
body_model: nn.Module,
var_dict: Dict[str, Tensor],
edge_loss: nn.Module,
optimizer_dict,
gt_vertices: Tensor,
per_part: bool = True,
part_key: Optional[str] = None,
jidx: Optional[int] = None,
part: Optional[Tensor] = None
) -> Callable:
''' Builds the closure for the edge objective
'''
optimizer = optimizer_dict['optimizer']
create_graph = optimizer_dict['create_graph']
if per_part:
params_to_opt = [part]
else:
params_to_opt = [p for key, p in var_dict.items() if 'pose' in key]
model_forward = build_model_forward_closure(
body_model, var_dict, per_part=per_part, part_key=part_key,
jidx=jidx, part=part)
def closure(backward=True):
if backward:
optimizer.zero_grad()
body_model_output = model_forward()
est_vertices = body_model_output['vertices']
loss = edge_loss(est_vertices, gt_vertices)
if backward:
if create_graph:
# Use this instead of .backward to avoid GPU memory leaks
grads = torch.autograd.grad(
loss, params_to_opt, create_graph=True)
torch.autograd.backward(
params_to_opt, grads, create_graph=True)
else:
loss.backward()
return loss
return closure
def build_vertex_closure(
body_model: nn.Module,
var_dict: Dict[str, Tensor],
optimizer_dict,
gt_vertices: Tensor,
vertex_loss: nn.Module,
mask_ids=None,
per_part: bool = True,
part_key: Optional[str] = None,
jidx: Optional[int] = None,
part: Optional[Tensor] = None,
params_to_opt: Optional[Tensor] = None,
) -> Callable:
''' Builds the closure for the vertex objective
'''
optimizer = optimizer_dict['optimizer']
create_graph = optimizer_dict['create_graph']
model_forward = build_model_forward_closure(
body_model, var_dict, per_part=per_part, part_key=part_key,
jidx=jidx, part=part)
if params_to_opt is None:
params_to_opt = [p for key, p in var_dict.items()]
def closure(backward=True):
if backward:
optimizer.zero_grad()
body_model_output = model_forward()
est_vertices = body_model_output['vertices']
loss = vertex_loss(
est_vertices[:, mask_ids] if mask_ids is not None else
est_vertices,
gt_vertices[:, mask_ids] if mask_ids is not None else gt_vertices)
if backward:
if create_graph:
# Use this instead of .backward to avoid GPU memory leaks
grads = torch.autograd.grad(
loss, params_to_opt, create_graph=True)
torch.autograd.backward(
params_to_opt, grads, create_graph=True)
else:
loss.backward()
return loss
return closure
def get_variables(
batch_size: int,
body_model: nn.Module,
dtype: torch.dtype = torch.float32
) -> Dict[str, Tensor]:
var_dict = {}
device = next(body_model.buffers()).device
if (body_model.name() == 'SMPL' or body_model.name() == 'SMPL+H' or
body_model.name() == 'SMPL-X'):
var_dict.update({
'transl': torch.zeros(
[batch_size, 3], device=device, dtype=dtype),
'global_orient': torch.zeros(
[batch_size, 1, 3], device=device, dtype=dtype),
'body_pose': torch.zeros(
[batch_size, body_model.NUM_BODY_JOINTS, 3],
device=device, dtype=dtype),
'betas': torch.zeros([batch_size, body_model.num_betas],
dtype=dtype, device=device),
})
if body_model.name() == 'SMPL+H' or body_model.name() == 'SMPL-X':
var_dict.update(
left_hand_pose=torch.zeros(
[batch_size, body_model.NUM_HAND_JOINTS, 3], device=device,
dtype=dtype),
right_hand_pose=torch.zeros(
[batch_size, body_model.NUM_HAND_JOINTS, 3], device=device,
dtype=dtype),
)
if body_model.name() == 'SMPL-X':
var_dict.update(
jaw_pose=torch.zeros([batch_size, 1, 3],
device=device, dtype=dtype),
leye_pose=torch.zeros([batch_size, 1, 3],
device=device, dtype=dtype),
reye_pose=torch.zeros([batch_size, 1, 3],
device=device, dtype=dtype),
expression=torch.zeros(
[batch_size, body_model.num_expression_coeffs],
device=device, dtype=dtype),
)
# Toggle gradients to True
for key, val in var_dict.items():
val.requires_grad_(True)
return var_dict
def run_fitting(
exp_cfg,
batch: Dict[str, Tensor],
body_model: nn.Module,
def_matrix: Tensor,
mask_ids: Optional = None
) -> Dict[str, Tensor]:
''' Runs fitting
'''
vertices = batch['vertices']
faces = batch['faces']
batch_size = len(vertices)
dtype, device = vertices.dtype, vertices.device
summary_steps = exp_cfg.get('summary_steps')
interactive = exp_cfg.get('interactive')
# Get the parameters from the model
var_dict = get_variables(batch_size, body_model)
# Build the optimizer object for the current batch
optim_cfg = exp_cfg.get('optim', {})
def_vertices = apply_deformation_transfer(def_matrix, vertices, faces)
if mask_ids is None:
f_sel = np.ones_like(body_model.faces[:, 0], dtype=np.bool_)
else:
f_per_v = [[] for _ in range(body_model.get_num_verts())]
[f_per_v[vv].append(iff) for iff, ff in enumerate(body_model.faces)
for vv in ff]
f_sel = list(set(tuple(sum([f_per_v[vv] for vv in mask_ids], []))))
vpe = get_vertices_per_edge(
body_model.v_template.detach().cpu().numpy(), body_model.faces[f_sel])
def log_closure():
return summary_closure(def_vertices, var_dict, body_model,
mask_ids=mask_ids)
edge_fitting_cfg = exp_cfg.get('edge_fitting', {})
edge_loss = build_loss(type='vertex-edge', gt_edges=vpe, est_edges=vpe,
**edge_fitting_cfg)
edge_loss = edge_loss.to(device=device)
vertex_fitting_cfg = exp_cfg.get('vertex_fitting', {})
vertex_loss = build_loss(**vertex_fitting_cfg)
vertex_loss = vertex_loss.to(device=device)
per_part = edge_fitting_cfg.get('per_part', True)
logger.info(f'Per-part: {per_part}')
# Optimize edge-based loss to initialize pose
if per_part:
for key, var in tqdm(var_dict.items(), desc='Parts'):
if 'pose' not in key:
continue
for jidx in tqdm(range(var.shape[1]), desc='Joints'):
part = torch.zeros(
[batch_size, 3], dtype=dtype, device=device,
requires_grad=True)
# Build the optimizer for the current part
optimizer_dict = build_optimizer([part], optim_cfg)
closure = build_edge_closure(
body_model, var_dict, edge_loss, optimizer_dict,
def_vertices, per_part=per_part, part_key=key, jidx=jidx,
part=part)
minimize(optimizer_dict['optimizer'], closure,
params=[part],
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
with torch.no_grad():
var[:, jidx] = part
else:
optimizer_dict = build_optimizer(list(var_dict.values()), optim_cfg)
closure = build_edge_closure(
body_model, var_dict, edge_loss, optimizer_dict,
def_vertices, per_part=per_part)
minimize(optimizer_dict['optimizer'], closure,
params=var_dict.values(),
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
if 'transl' in var_dict:
optimizer_dict = build_optimizer([var_dict['transl']], optim_cfg)
closure = build_vertex_closure(
body_model, var_dict,
optimizer_dict,
def_vertices,
vertex_loss=vertex_loss,
mask_ids=mask_ids,
per_part=False,
params_to_opt=[var_dict['transl']],
)
# Optimize translation
minimize(optimizer_dict['optimizer'],
closure,
params=[var_dict['transl']],
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
# Optimize all model parameters with vertex-based loss
optimizer_dict = build_optimizer(list(var_dict.values()), optim_cfg)
closure = build_vertex_closure(
body_model, var_dict,
optimizer_dict,
def_vertices,
vertex_loss=vertex_loss,
per_part=False,
mask_ids=mask_ids)
minimize(optimizer_dict['optimizer'], closure,
params=list(var_dict.values()),
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
param_dict = {}
for key, var in var_dict.items():
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
body_model_output = body_model(
return_full_pose=True, get_skin=True, **param_dict)
transl = var_dict['transl']
var_dict.update(body_model_output)
var_dict['transl'] = transl
var_dict['faces'] = body_model.faces
return var_dict