-
Notifications
You must be signed in to change notification settings - Fork 0
/
view_pkl.py
executable file
·140 lines (117 loc) · 5.09 KB
/
view_pkl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os.path as osp
import argparse
import numpy as np
import torch
import pyrender
import trimesh
import smplx
from tqdm.auto import tqdm, trange
from pathlib import Path
def main(model_folder,
motion_file,
model_type='smplx',
ext='npz',
gender='neutral',
plot_joints=False,
num_betas=10,
sample_expression=True,
num_expression_coeffs=10,
use_face_contour=False):
# open motion file
motion = np.load(motion_file, allow_pickle=True)
_motion = {}
for k,v in motion.items():
if isinstance(v, np.ndarray):
print(k, motion[k].shape, motion[k].dtype)
if motion[k].dtype in ("<U7", "<U5", "<U4", "object", "|S7"):
_motion[k] = str(motion[k])
else:
_motion[k] = torch.from_numpy(motion[k]).float()
else:
print(k, v)
_motion[k] = v
motion = _motion
if "poses" in motion:
motion["global_orient"] = motion["root_orient"]
motion["body_pose"] = motion["pose_body"] # seriously?
motion["left_hand_pose"] = motion["pose_hand"][:,:45]
motion["right_hand_pose"] = motion["pose_hand"][:,45:]
num_betas = len(motion['betas'])
gender = str(motion['gender'])
model = smplx.create(model_folder, model_type=model_type,
gender=gender, use_face_contour=use_face_contour,
num_betas=num_betas,
num_expression_coeffs=num_expression_coeffs,
use_pca=False,
ext=ext)
betas, expression = motion['betas'], None
betas = betas.unsqueeze(0)[:, :model.num_betas]
global_orient = motion['global_orient']
body_pose = motion['body_pose']
left_hand_pose = motion['left_hand_pose']
right_hand_pose = motion['right_hand_pose']
# if sample_expression:
# expression = torch.randn(
# [1, model.num_expression_coeffs], dtype=torch.float32)
#print(expression)
#print(betas.shape, body_pose.shape, expression.shape)
for pose_idx in trange(body_pose.size(0)):
pose_idx = [pose_idx]
# output = model(betas=betas, # expression=expression,
# return_verts=True)
# for x in [betas, global_orient, body_pose, left_hand_pose, right_hand_pose]:
# print(x.dtype, x.shape)
output = model(
betas=betas,
global_orient=global_orient[pose_idx],
body_pose=body_pose[pose_idx],
left_hand_pose=left_hand_pose[pose_idx],
right_hand_pose=right_hand_pose[pose_idx],
# expression=expression,
return_verts=True
)
vertices = output.vertices.detach().cpu().numpy().squeeze()
joints = output.joints.detach().cpu().numpy().squeeze()
vertex_colors = np.ones([vertices.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
tri_mesh = trimesh.Trimesh(vertices, model.faces,
vertex_colors=vertex_colors)
mesh = pyrender.Mesh.from_trimesh(tri_mesh)
scene = pyrender.Scene()
scene.add(mesh)
if plot_joints:
sm = trimesh.creation.uv_sphere(radius=0.005)
sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0]
tfs = np.tile(np.eye(4), (len(joints), 1, 1))
tfs[:, :3, 3] = joints
joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs)
scene.add(joints_pcl)
pyrender.Viewer(scene, use_raymond_lighting=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SMPL-X Demo')
parser.add_argument('--model-folder', required=True, type=str,
help='The path to the model folder')
parser.add_argument('--motion-file', required=True, type=str,
help='The path to the motion file to process')
parser.add_argument('--num-expression-coeffs', default=10, type=int,
dest='num_expression_coeffs',
help='Number of expression coefficients.')
parser.add_argument('--ext', type=str, default='npz',
help='Which extension to use for loading')
parser.add_argument('--sample-expression', default=True,
dest='sample_expression',
type=lambda arg: arg.lower() in ['true', '1'],
help='Sample a random expression')
parser.add_argument('--use-face-contour', default=False,
type=lambda arg: arg.lower() in ['true', '1'],
help='Compute the contour of the face')
args = parser.parse_args()
def resolve(path):
return osp.expanduser(osp.expandvars(path))
model_folder = resolve(args.model_folder)
motion_file = resolve(args.motion_file)
ext = args.ext
num_expression_coeffs = args.num_expression_coeffs
sample_expression = args.sample_expression
main(model_folder, motion_file, ext=ext,
sample_expression=sample_expression,
use_face_contour=args.use_face_contour)